PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sorption-enhanced steam methane reforming (SE-SMR) – a review: reactor types, catalyst and sorbent characterization, process modeling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this review, research carried out on sorption-enhanced steam methane reforming (SESMR) process is presented and discussed. The reactor types employed to carry out this process, fixed packed bed and fluidized bed reactors, are characterized as well as their main operating conditions indicated. Also the concepts developed and investigations performed by the main research groups involved in the subject are summarized. Next the catalysts and CO2 sorbents developed to carry out SE-SMR are characterized and the relationships describing the reaction and sorption kinetics are collected. A general approach to model the process is presented as well as results obtained for a calculation example, which demonstrate the main properties of SE-SMR.
Rocznik
Strony
427--–448
Opis fizyczny
Bibliogr. 89 poz.
Twórcy
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Waryńskiego 1, 00-645 Warszawa, Poland
autor
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. Wary ́ nskiego 1, 00-645 Warszawa, Poland
Bibliografia
  • 1. IEA, 2012. Energy Technology Perspectives 2012: Pathways to a Clean Energy System. OECD Publishing, Paris. DOI: 10.1787/energy_tech-2012-en.
  • 2. Muradov N., Vezirolu T., 2005. From hydrocarbon to hydrogen-carbon to hydrogen economy. Int. J. Hydrogen Energy, 30, 225–237. DOI: 10.1016/j.ijhydene.2004.03.033.
  • 3. Hufton J.R.R., Mayorga S., Sircar S., 1999. Sorption-enhanced reaction process for hydrogen production. AIChE J., 45, 248–256. DOI: 10.1002/aic.690450205.
  • 4. Agar D.W., 2005. The dos and don’ts of adsorptive reactors, In: Sundmacher K., Kienle A., Seidel Morgenstern
  • A., Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control. Wiley-VCH Verlag GmbH & Co. KGaA, 203–232. DOI: 10.1002/3527605738.ch7.
  • 5. Molga E., 2008. Reactive adsorption processes – Adsorptive and chromatographic reactors. WNT, Warszawa (in Polish).
  • 6. Sircar S., Lee K.B. (Eds.), 2010. Sorption enhanced reaction concepts for hydrogen production: Materials & processes. Research Singpost.
  • 7. Wu Y.-J., Li P., Yu J.-G., Cunha A.F., Rodrigues A.E., 2016. Progress on sorption-enhanced reaction process for hydrogen production. Rev. Chem. Eng., 32, 271–303. DOI: 10.1515/revce-2015-0043.
  • 8. Harrison D.P., 2008. Sorption-enhanced hydrogen production: A review. Ind. Eng. Chem. Res., 47, 6486–6501. DOI: 10.1021/ie800298z.
  • 9. Rodrigues A.E., Madeira L.M., Wu Y.-J., Faria R., 2017. Sorption enhanced reaction processes, Vol. 01. Portugal World Scientific (Europe). DOI: 10.1142/q0103.
  • 10. Waldron W.E.E., Hufton J.R.R., Sircar S., 2001. Production of hydrogen by cyclic sorption enhanced reaction process. AIChE J., 47, 1477–1479. DOI: 10.1002/aic.690470623.
  • 11. Xiu G., Li P., Rodrigues A.E., 2003. Adsorption-enhanced steam-methane reforming with intraparticle diffusion limitations. Chem. Eng. J., 95, 83–93. DOI: 10.1016/S1385-8947(03)00116-5.
  • 12. Carvill B.T.T., Hufton J.R.R., Anand M., Sircar S., 1996. Sorption-enhanced reaction process. AIChE J., 42, 2765–2772. DOI: 10.1002/aic.690421008.
  • 13. Balasubramanian B., Lopez Ortiz A., Kaytakoglu S., Harrison D.P., 1999. Hydrogen from methane in a singlestep process. Chem. Eng. Sci., 54, 3543–3552. DOI: 10.1016/S0009-2509(98)00425-4.
  • 14. Ding Y., Alpay E., 2000. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci., 55, 3461–3474. DOI: 10.1016/S0009-2509(99)00596-5.
  • 15. Ding Y., Alpay E., 2000. Adsorption-enhanced steam–methane reforming. Chem. Eng. Sci., 55, 3929–3940. DOI: 10.1016/S0009-2509(99)00597-7.
  • 16. Zou Y., Rodrigues A.E., 2001. The separation enhanced reaction process (SERP) in the production of hydrogen from methane steam reforming. Adsorpt. Sci. Technol., 19, 655–671. DOI: 10.1260/0263617011494475.
  • 17. Chanburanasiri N., Ribeiro A.M., Rodrigues A.E., Laosiripojana N., Assabumrungrat S., 2013. Simulation of methane steam reforming enhanced by in situ CO2 sorption using K2CO3-promoted hydrotalcites for H2 production. Energy Fuels, 27, 4457–4470. DOI: 10.1021/ef302043e.
  • 18. Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2008. CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Sep. Purif. Technol., 62, 137–147. DOI: 10.1016/j.seppur.2008.01.011.
  • 19. Wang Y.-N., Rodrigues A.E., 2005. Hydrogen production from steam methane reforming coupled with in situ CO2 capture: Conceptual parametric study. Fuel, 84, 1778–1789. DOI: 10.1016/j.fuel.2005.04.005.
  • 20. Xiu G.H., Li P., Rodrigues A.E., 2004. Subsection-controlling strategy for improving sorption-enhanced reaction process. Chem. Eng. Res. Des., 82, 192–202. DOI: 10.1205/026387604772992765.
  • 21. Xiu G., Li P., Rodrigues A.E., 2003. New generalized strategy for improving sorption-enhanced reaction process. 38. Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2011. Reactor modeling of sorption-enhanced autothermal reforming of methane. Part II: Effect of operational parameters. Chem. Eng. J., 168, 883–888. DOI: 10.1016/j.cej.2011.02.016.
  • 22. Xiu G., Soares J.L., Li P., Rodrigues A.E., 2002. Simulation of five-step one-bed sorption-enhanced reaction process. AIChE J., 48, 2817–2832. DOI: 10.1002/aic.690481210.
  • 23. Xiu G., Li P., E. Rodrigues A., 2002. Sorption-enhanced reaction process with reactive regeneration. Chem. Eng. Sci., 57, 3893–3908. DOI: 10.1016/S0009-2509(02)00245-2.
  • 24. Rusten H.K., Ochoa-Fernández E., Lindborg H., Chen D., Jakobsen H.A., 2007. Hydrogen production by sorption-enhanced steam methane reforming using lithium oxides as CO2-acceptor. Ind. Eng. Chem. Res., 46, 8729–8737. DOI: 10.1021/ie070770k.
  • 25. Rusten H.K., Ochoa-Fernández E., Chen D., Jakobsen H.A., 2007. Numerical investigation of sorption enhanced steam methane reforming using Li2ZrO3 as CO2-acceptor. Ind. Eng. Chem. Res., 46, 4435–4443. DOI: 10.1021/ ie061525o.
  • 26. Ochoa-Fernández E., Haugen G., Zhao T., Rˇrnning M., Aartun I., Bˇrrresen B., Rytter E., Rˇrnnekleiv M., Chen D., 2007. Process design simulation of H2 production by sorption enhanced steam methane reforming: evaluation of potential CO2 acceptors. Green Chem., 9, 654–662. DOI: 10.1039/B614270B.
  • 27. Ochoa-Fernández E., Rusten H.K., Jakobsen H.A., Rˇrnning M., Holmen A., Chen D., 2005. Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: Sorption kinetics and reactor simulation. Catal. Today, 106, 41–46. DOI: 10.1016/j.cattod.2005.07.146.
  • 28. Reijers H.T.J., Elzinga G.D., Cobden P.D., Haije W.G., van den Brink R.W., 2011. Tandem bed configuration for sorption-enhanced steam reforming of methane. Int. J. Greenh. Gas Control, 5, 531–537. DOI: 10.1016/j.ijggc. 2010.04.007.
  • 29. Reijers H.T.J., Boon J., Elzinga G.D., Cobden P.D., Haije W.G., van den Brink R.W., 2009. Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation. Ind. Eng. Chem. Res., 48, 6966–6974. DOI: 10.1021/ie801319q.
  • 30. Reijers H.T.J., Boon J., Elzinga G.D., Cobden P.D., Haije W.G., van den Brink R.W., 2009. Modeling study of the sorption-enhanced reaction process for CO2 Capture. II. Application to steam-methane reforming. Ind. Eng. Chem. Res., 48, 6975–6982. DOI: 10.1021/ie8013204.
  • 31. Solieman A.A.A., Dijkstra J.W., Haije W.G., Cobden P.D., van den Brink R.W., 2009. Calcium oxide for CO2 capture: Operational window and efficiency penalty in sorption-enhanced steam methane reforming. Int. J. Greenh. Gas Control, 3, 393–400. DOI: 10.1016/j.ijggc.2009.02.002.
  • 32. Cobden P.D., van Beurden P., Reijers H.T.J., Elzinga G.D., Kluiters S.C.A., Dijkstra J.W., Jansen D., van den Brink R.W., 2007. Sorption-enhanced hydrogen production for pre-combustion CO2 capture: Thermodynamic analysis and experimental results. Int. J. Greenh. Gas Control, 1, 170–179. DOI: 10.1016/S1750-5836(07) 00021-7.
  • 33. Reijers H.T.J., Valster-Schiermeier S.E.A.A., Cobden P.D., van den Brink R.W., 2006. Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane. Ind. Eng. Chem. Res., 45, 2522–2530. DOI: 10.1021/ ie050563p.
  • 34. Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2012. Kinetic and structural requirements for a CO2 adsorbent in sorption enhanced catalytic reforming of methane – Part I: Reaction kinetics and sorbent capacity. Fuel, 99, 154–164. DOI: 10.1016/j.fuel.2012.04.016.
  • 35. Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2012. A novel catalyst–sorbent system for an efficient H2 production with in-situ CO2 capture. Int. J. Hydrogen Energy, 37, 4987–4996. DOI: 10.1016/j.ijhydene.2011.12.025.
  • 36. Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2012. High capacity potassiumpromoted hydrotalcite for CO2 capture in H2 production. Int. J. Hydrogen Energy, 37, 4516–4525. DOI: 10.1016/ j.ijhydene.2011.12.003.
  • 37. Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2011. Reactor modeling of sorption-enhanced autothermal reforming of methane. Part I: Performance study of hydrotalcite and lithium zirconate-based processes. Chem. Eng. J., 168, 872–882. DOI: 10.1016/j.cej.2011.02.015.
  • 39. Chao Z., Zhang Y.,Wang Y., Jakobsen J.P., Jakobsen H.A., 2017. Modelling of binary fluidized bed reactors for the sorption-enhanced steam methane reforming process. Can. J. Chem. Eng., 95, 157–169. DOI: 10.1002/cjce.22602.
  • 40. Solsvik J., Chao Z., Jakobsen H.A., 2015. Modeling and simulation of bubbling fluidized bed reactors using a dynamic one-dimensional two-fluid model: The sorption-enhanced steam–methane reforming process. Adv. Eng. Softw., 80, 156–173. DOI: 10.1016/j.advengsoft.2014.09.011.
  • 41. Solsvik J., Chao Z., Sánchez R.A., Jakobsen H.A., 2014. Numerical investigation of steam methane reforming with CO2-capture in bubbling fluidized bed reactors. Fuel Process. Technol., 125, 290–300. DOI: 10.1016/j.fuproc.2014.03.039.
  • 42. Wang J.,Wang Y., Jakobsen H.A., 2014. The modeling of circulating fluidized bed reactors for SE-SMR process and sorbent regeneration. Chem. Eng. Sci., 108, 57–65. DOI: 10.1016/j.ces.2013.12.012.
  • 43. Solsvik J., Sánchez R.A., Chao Z., Jakobsen H.A., 2013. Simulations of steam methane reforming/sorptionenhanced steam methane reforming bubbling fluidized bed reactors by a dynamic one-dimensional two-fluid model: Implementation issues and model validation. Ind. Eng. Chem. Res., 52, 4202–4220. DOI: 10.1021/ ie303348r.
  • 44. Rout K.R., Jakobsen H.A., 2013. A numerical study of pellets having both catalytic- and capture properties for SE-SMR process: Kinetic- and product layer diffusion controlled regimes. Fuel Process. Technol., 106, 231–246. DOI: 10.1016/j.fuproc.2012.07.029.
  • 45. Rout K.R., Jakobsen H.A., 2012. Reactor performance optimization by the use of a novel combined pellet reflecting both catalyst and adsorbent properties. Fuel Process. Technol., 99, 13–34. DOI: 10.1016/j.fuproc.2012. 01.035.
  • 46. Solsvik J., Jakobsen H.A., 2011. A numerical study of a two property catalyst/sorbent pellet design for the sorption-enhanced steam–methane reforming process: Modeling complexity and parameter sensitivity study. Chem. Eng. J., 178, 407–422. DOI: 10.1016/j.cej.2011.10.045.
  • 47. Rout K.R., Solsvik J., Nayak A.K., Jakobsen H.A., 2011. A numerical study of multicomponent mass diffusion and convection in porous pellets for the sorption-enhanced steam methane reforming and desorption processes. Chem. Eng. Sci., 66, 4111–4126. DOI: 10.1016/j.ces.2011.05.040.
  • 48. Wang Y., Chao Z., Jakobsen H.A., 2011. Numerical study of hydrogen production by the sorption-enhanced steam methane reforming process with online CO2 capture as operated in fluidized bed reactors. Clean Technol. Environ. Policy, 13, 559–565. DOI: 10.1007/s10098-011-0368-y.
  • 49. Wang Y., Chao Z., Jakobsen H.A., 2011. Effects of gas–solid hydrodynamic behavior on the reactions of the sorption enhanced steam methane reforming process in bubbling fluidized bed reactors. Ind. Eng. Chem. Res., 50, 8430–8437. DOI: 10.1021/ie102330d.
  • 50. Wang Y., Chao Z., Chen D., Jakobsen H.A., 2011. SE-SMR process performance in CFB reactors: Simulation of the CO2 adsorption/desorption processes with CaO based sorbents. Int. J. Greenh. Gas Control, 5, 489–497. DOI: 10.1016/j.ijggc.2010.09.001.
  • 51. Wang Y., Chao Z., Jakobsen H.A., 2010. 3D simulation of bubbling fluidized bed reactors for sorption enhanced steam methane reforming processes. J. Nat. Gas Sci. Eng., 2, 105–113. DOI: 10.1016/j.jngse.2010.04.004.
  • 52. Lindborg H., Jakobsen H.A., 2009. Sorption enhanced steam methane reforming process performance and bubbling fluidized bed reactor design analysis by use of a two-fluid model. Ind. Eng. Chem. Res., 48, 1332–1342. DOI: 10.1021/ie800522p.
  • 53. Chanburanasiri N., Ribeiro A.M., Rodrigues A.E., Arpornwichanop A., Laosiripojana N., Praserthdam P., Assabumrungrat S., 2011. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst. Ind. Eng. Chem. Res., 50, 13662–13671. DOI: 10.1021/ie201226j.
  • 54. Lugo E.L., Wilhite B.A., 2016. A theoretical comparison of multifunctional catalyst for sorption-enhanced reforming process. Chem. Eng. Sci., 150, 1–15. DOI: 10.1016/j.ces.2016.04.011. Chem. Eng. Sci., 58, 3425–3437. DOI: 10.1016/S0009-2509(03)00200-8. 22
  • 55. Aloisi I., Jand N., Stendardo S., Foscolo P.U., 2016. Hydrogen by sorption enhanced methane reforming: A grain model to study the behavior of bi-functional sorbent-catalyst particles. Chem. Eng. Sci., 149, 22– 34. DOI: 10.1016/ j.ces.2016.03.042.
  • 56. Voldsund M., Jordal K., Anantharaman R., 2016. Hydrogen production with CO2 capture. Int. J. Hydrogen Energy, 41, 4969–4992. DOI: 10.1016/j.ijhydene.2016.01.009.
  • 57. Oliveira E.L.G., Grande C.A., Rodrigues A.E., 2011. Effect of catalyst activity in SMR-SERP for hydrogen production: Commercial vs. large-pore catalyst. Chem. Eng. Sci., 66, 342–354. DOI: 10.1016/j.ces.2010.10.030.
  • 58. Lee D.K., Baek I.H., YoonW.L., 2004. Modeling and simulation for the methane steam reforming enhanced by in situ CO2 removal utilizing the CaO carbonation for H2 production. Chem. Eng. Sci., 59, 931–942. DOI: 10.1016/j.ces.2003.12.011.
  • 59. Zhang Q., Shen C., Zhang S., Wu Y., 2016. Steam methane reforming reaction enhanced by a novel K2CO3- Doped Li4SiO4 sorbent: Investigations on the sorbent and catalyst coupling behaviors and sorbent regeneration strategy. Int. J. Hydrogen Energy, 41, 4831–4842. DOI: 10.1016/j.ijhydene.2015.12.116.
  • 60. Cherba´nski R., Molga E., 2018. Sorption-enhanced steam-methane reforming with simultaneous sequestration of CO2 on fly ashes – Proof of concept and simulations for gas-solid-solid trickle flow reactor. Chem. Eng. Process. – Process Intensif., 124, 37–49. DOI: 10.1016/j.cep.2017.11.010.
  • 61. Westerterp K.R., Kuczynski M., 1987. A model for a countercurrent gas–solid–solid trickle flow reactor for equilibrium reactions. The methanol synthesis. Chem. Eng. Sci., 42, 1871–1885. DOI: 10.1016/0009-2509(87) 80134-3.
  • 62. Kuczynski M., Oyevaar M.H., Pieters R.T.,Westerterp K.R., 1987. Methanol synthesis in a countercurrent gas– solid–solid trickle flow reactor. An experimental study. Chem. Eng. Sci., 42, 1887–1898. DOI: 10.1016/0009- 2509(87)80135-5.
  • 63. Dallos C.G., Kafarov V., Filho R.M., 2007. A two dimensional steady-state model of the gas–solid–solid reactor. Chem. Eng. J., 134, 209–217. DOI: 10.1016/j.cej.2007.03.044.
  • 64. Dehghani Z., Bayat M., Rahimpour M.R., 2014. Sorption-enhanced methanol synthesis: Dynamic modeling and optimization. J. Taiwan Inst. Chem. Eng., 45, 1490–1500. DOI: 10.1016/j.jtice.2013.12.001.
  • 65. Hamidi M., Samimi F., Rahimpour M.R., 2015. Dimethyl ether synthesis in a gas–solid–solid trickle flow reactor with continuous adsorbent regeneration. J. Taiwan Inst. Chem. Eng., 47, 105–112. DOI: 10.1016/j.jtice. 2014.10.013.
  • 66. Bayat M., Hamidi M., Dehghani Z., Rahimpour M.R., 2014. Sorption-enhanced Fischer–Tropsch synthesis with continuous adsorbent regeneration in GTL technology: Modeling and optimization. J. Ind. Eng. Chem., 20, 858–869. DOI: 10.1016/j.jiec.2013.06.016.
  • 67. Bianchi E., Heidig T., Visconti C.G., Groppi G., Freund H., Tronconi E., 2012. An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo-/endo-thermic catalytic processes in tubular reactors. Chem. Eng. J., 198–199, 512–528. DOI: 10.1016/j.cej.2012.05.045.
  • 68. Della Torre A., Lucci F., Montenegro G., Onorati A., Dimopoulos Eggenschwiler P., Tronconi E., Groppi G., 2016. CFD modeling of catalytic reactions in open-cell foam substrates. Comput. Chem. Eng., 92, 55–63. DOI: 10.1016/j.compchemeng.2016.04.031.
  • 69. Oliveira E.L.G.G., Grande C.A., Rodrigues A.E., 2009. Steam methane reforming in a Ni/Al2O3 catalyst: Kinetics and diffusional limitations in extrudates. Can. J. Chem. Eng., 87, 945–956. DOI: 10.1002/cjce.20223.
  • 70. Halabi M.H., de Croon M.H.J.M., van der Schaaf J., Cobden P.D., Schouten J.C., 2010. Low temperature catalytic methane steam reforming over ceria–zirconia supported rhodium. Appl. Catal. A Gen., 389, 68–79. DOI: 10.1016/j.apcata.2010.09.004.
  • 71. Dong W., 2002. Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content. Appl. Catal. A Gen., 226, 63–72. DOI: 10.1016/S0926-860X(01)00883-3.
  • 72. Roh H., 2002. Highly active and stable Ni/Ce–ZrO2 catalyst for H2 production from methane. J. Mol. Catal. A Chem., 181, 137–142. DOI: 10.1016/S1381-1169(01)00358-2.
  • 73. Takahashi R., Sato S., Sodesawa T., Yoshida M., Tomiyama S., 2004. Addition of zirconia in Ni/SiO2 catalyst for improvement of steam resistance. Appl. Catal. A Gen., 273, 211–215. DOI: 10.1016/j.apcata.2004.06.033.
  • 74. Ochoa-Fernández E., Lacalle-Vil´r C., Christensen K.O.,Walmsley J.C., Rˇrnning M., Holmen A., Chen D., 2007. Ni catalysts for sorption enhanced steam methane reforming. Top. Catal., 45, 3–8. DOI: 10.1007/s11244-007- 0231-x.
  • 75. Xu J., Froment G.F., 1989. Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J., 35, 88–96. DOI: 10.1002/aic.690350109.
  • 76. Yong Z., Mata V., Rodrigues A., 2002. Adsorption of carbon dioxide at high temperature – A review. Sep. Purif. Technol., 26, 195–205. DOI: 10.1016/S1383-5866(01)00165-4.
  • 77. Yong Z., Rodrigues A.E., 2002. Hydrotalcite-like compounds as adsorbents for carbon dioxide. Energy Convers. Manag., 43, 1865–1876. DOI: 10.1016/S0196-8904(01)00125-X.
  • 78. Shokrollahi Yancheshmeh M., Radfarnia H.R., Iliuta M.C., 2016. High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process. Chem. Eng. J., 283, 420–444. DOI: 10.1016/j.cej.2015.06.060.
  • 79. Dou B., Wang C., Song Y., Chen H., Jiang B., Yang M., Xu Y., 2016. Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review. Renew. Sustain. Energy Rev., 53, 536–546. DOI: 10.1016/j.rser.2015.08.068.
  • 80. Lopes F.V.S., Grande C.A., Ribeiro A.M., Oliveira E.L.G., Loureiro J.M., Rodrigues A.E., 2009. Enhancing capacity of activated carbons for hydrogen purification. Ind. Eng. Chem. Res., 48, 3978–3990. DOI: 10.1021/ ie801132t.
  • 81. Uliasz-Bochenczyk A., Mokrzycki E., 2006. Fly ashes from polish power plants and combined heat and power plants and conditions of their application for carbon dioxide utilization. Chem. Eng. Res. Des., 84, 837–842. DOI: 10.1205/cherd.05145.
  • 82. Molga E., Cherbanski R., 2012. Hydrogen production integrated with simultaneous CO2 sequestration on fly ashes from power plants. Chem. Eng. Technol., 35, 539–546. DOI: 10.1002/ceat.201100207.
  • 83. Olivares-Marín M., Drage T.C., Maroto-Valer M.M., 2010. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures. Int. J. Greenh. Gas Control, 4, 623–629. DOI: 10.1016/j.ijggc.2009.12.015.
  • 84. Wee J.-H., 2013. A review on carbon dioxide capture and storage technology using coal fly ash. Appl. Energy, 106, 143–151. DOI: 10.1016/j.apenergy.2013.01.062.
  • 85. Yan F., Jiang J., Zhao M., Tian S., Li K., Li T., 2015. A green and scalable synthesis of highly stable Ca based sorbents for CO2 capture. J. Mater. Chem. A, 3, 7966–7973. DOI: 10.1039/C4TA06639A.
  • 86. Sanna A., Ramli I., Mercedes Maroto-Valer M., 2015. Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture. Appl. Energy, 156, 197–206. DOI: 10.1016/j.apenergy.2015.07.008.
  • 87. Sanna A., Maroto-Valer M.M., 2016. CO2 capture at high temperature using fly ash-derived sodium silicates. Ind. Eng. Chem. Res., 55, 4080–4088. DOI: 10.1021/acs.iecr.5b04780.
  • 88. Sanna A., Maroto-Valer M.M., 2016. Potassium-based sorbents from fly ash for high-temperature CO2 capture. Environ. Sci. Pollut. Res., 23, 22242–22252. DOI: 10.1007/s11356-016-6378-x.
  • 89. Sreenivasulu B., Sreedhar I., Reddy B.M., Raghavan K.V., 2017. Stability and carbon capture enhancement by coal-fly-ash
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-795ffa68-dd42-42f5-bb21-0410ebcb2909
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.