PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Persistence of some iterated processes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the asymptotic behaviour of the probability that a stochastic process (Zt)t ≥ 0 does not exceed a constant barrier up to time T (a so-called persistence probability) when Z is the composition of two independent processes (Xt)t ϵ I and (Yt)t ≥ 0. To be precise, we consider (Zt)t ≥ 0 defined by Zt = X ◦ |Yt| if I = [0, ∞) and Zt = X ◦ Yt if I = R. For continuous self-similar processes (Yt)t ≥ 0, the rate of decay of persistence probability for Z can be inferred directly from the persistence probability of X and the index of self-similarity of Y. As a corollary, we infer that the persistence probability for iterated Brownian motion decays asymptotically like T−1/2. If Y is discontinuous, the range of Y possibly contains gaps, which complicates the estimation of the persistence probability. We determine the polynomial rate of decay for X being a Lévy process (possibly two-sided if I = R) or a fractional Brownian motion and Y being a Lévy process or random walk under suitable moment conditions.
Rocznik
Strony
293--316
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Institut für Mathematische Stochastik, Technische Universität Braunschweig, Pockelsstr. 14, 38106 Braunschweig, Germany
Bibliografia
  • [1] A. de Acosta, Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm, Ann. Probab. 11 (1) (1983), pp. 76-101.
  • [2] H. Allouba and W. Zheng, Brownian-time processes: the PDE connection and the half-derivative generator, Ann. Probab. 29 (4) (2001), pp. 1780-1795.
  • [3] F. Aurzada and C. Baumgarten, Survival probabilities of weighted random walks, ALEA Lat. Am. J. Probab. Math. Stat. 8 (2011), pp. 235-258.
  • [4] F. Aurzada and S. Dereich, Universality of the asymptotics of the one-sided exit problem for integrated processes, Ann. Inst. H. Poincaré Probab. Statist. 49 (1) (2013), pp. 236-251.
  • [5] F. Aurzada and M. Lifshits, On the small deviation problem for some iterated processes, Electron. J. Probab. 14 (68) (2009), pp. 1992-2010.
  • [6] F. Aurzada and T. Simon, Persistence probabilities and exponents, arXiv: 1203.6554 (2012).
  • [7] N. H. Bingham, Limit theorems in fluctuation theory, Adv. in Appl. Probab. 5 (1973), pp. 554-569.
  • [8] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
  • [9] A. J. Bray, S. N. Majumdar, and G. Schehr, Persistence and first-passage properties in non-equilibrium systems, Adv. Phys. 62 (3) (2013), pp. 225-361.
  • [10] K. Burdzy, Some path properties of iterated Brownian motion, in: Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992), Progr. Probab. 33 (1993), pp. 67-87.
  • [11] A. Dembo, J. Ding, and F. Gao, Persistence of iterated partial sums, Ann. Inst. H. Poincaré Probab. Statist. 49 (3) (2013), pp. 873-884.
  • [12] A. Dembo, B. Poonen, Q.-M. Shao, and O. Zeitouni, Random polynomials having few or no real zeros, J. Amer. Math. Soc. 15 (4) (2002), pp. 857-892.
  • [13] R. A. Doney, Fluctuation Theory for Lévy Processes, Springer, Berlin 2007.
  • [14] V. A. Egorov, The rate of convergence to the normal law that is equivalent to the existence of the second moment, Theory Probab. Appl. 18 (1973), pp. 175-180.
  • [15] M. S. Eppel, A local limit theorem for the first overshoot, Siberian Math. J. 20 (1979), pp. 130-138.
  • [16] J. D. Esary, F. Proschan, and D. W. Walkup, Association of random variables, with applications, Ann. Math. Statist. 38 (1967), pp. 1466-1474.
  • [17] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, Wiley, New York 1971.
  • [18] T. Grzywny and M. Ryznar, Two-sided optimal bounds for Green functions of half-spaces for relativistic α-stable process, Potential Anal. 28 (3) (2008), pp. 201-239.
  • [19] M. Ledoux and M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes, Springer, Berlin-Heidelberg 1991.
  • [20] W. V. Li and Q.-M. Shao, Gaussian processes: Inequalities, small ball probabilities and applications, in: Stochastic Processes: Theory and Methods, D. N. Shanbhag and C. R. Rao (Eds.), Handbook of Statist., Vol. 19, Elsevier, New York 2001, pp. 533-598.
  • [21] A. A. Mogulskiĭ, Small deviations in the space of trajectories, Theor. Probab. Appl. 19 (4) (1974), pp. 726-736.
  • [22] G. M. Molchan, Maximum of a fractional Brownian motion: Probabilities of small values, Comm. Math. Phys. 205 (1) (1999), pp. 97-111.
  • [23] E. Nane, Higher order PDE’s and iterated processes, Trans. Amer. Math. Soc. 360 (5) (2008), pp. 2681-2692.
  • [24] B. Rosén, On the asymptotic distribution of sums of independent indentically distributed random variables, Ark. Mat. 4 (1962), pp. 323-332.
  • [25] Ya. G. Sinai, Statistics of shocks in solutions of inviscid Burgers equation, Comm. Math. Phys. 148 (3) (1992), pp. 601-621.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-795e7eff-1c78-40fd-a4f4-fc8fe10c6d7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.