PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Cryogenic Cycling on the Mechanical Properties of Epoxy-Glass Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glass-epoxy laminates are characterized by exceptional properties such as high thermal insulation, resistance to mechanical damage, and stability at low temperatures. These crucial characteristics make them suitable for diverse applications, including cryogenics. Their application in cryogenics allows them to maintain low temperatures in research and industrial processes. This article ana-lyzes the effect of cryogenic cycles on the functional properties of composite materials. The study investigated the influence of cryogenic cycles on the mechanical properties of glass-epoxy laminates. Three sets of cycles were employed, each consisting of 1, 5, and 10 cycles. After each set of cycles, the mechanical properties, including impact strength, flexural strength, and Young's modulus, were measured and compared. Additionally, after each series, scanning electron microscopy (SEM) was used to carefully observe the material's surface and detect possible changes in its appearance and structure, such as cracks or deformations. Conclusions from the conducted research provide essential information on the correlation between cryogenic cycles and the functional properties of composites obtained by coating. The research results can be used to design and improve these materials in various industrial applications. This work determines the effect of a different composition of resin reinforced with glass fabric weighing 205 g/m2 on the mechanical properties of composite materials subjected to cryogenic cycles. This research aims to create innovative materials adapted to work in cryogenic environments.
Twórcy
autor
  • Scientific and Didactic Laboratory of Nanotechnology and Materials Technologies, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  • Scientific and Didactic Laboratory of Nanotechnology and Materials Technologies, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  • Materials Research Laboratory, Department of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18A, 44-100, Gliwice, Poland
Bibliografia
  • 1. Rawal S.P., Goodman J.W. Composites for Space-craft. In: Comprehensive Composite Materials Elsevier; 2000; 279–315.
  • 2. Mahdavi S., Gupta S.K., Hojjati M. Thermal cycling of composite laminates made of out-of-autoclave materials. Sci Eng Compos Mater. 2018; 25(6): 1145–56.
  • 3. Ghasemi A.R., Moradi M. Low thermal cycling effects on mechanical properties of laminated composite materials. Mech Mater. 2016; 96: 126–37.
  • 4. Han J., Qin Y., Gao W., Sun M. In Proceedings of the International Astronautical Congress, IAC, 2014; 5859–5866.
  • 5. Zhang G., Shi G., Yuan W., Liu Y. Magnetic properties of iron-based soft magnetic composites prepared via phytic acid surface treatment. Ceram Int. 2021; 47(7): 8795–802.
  • 6. Sanborn J.A., Morel D.E. Effects of thermal cycling on the mechanical and physical properties of a space qualified epoxy adhesive. J Reinf Plast Compos. 1988; 7(2): 155–64.
  • 7. Henaffgardin C. Specificity of matrix cracking development in CFRP laminates under mechanical or thermal loadings. Int J Fatigue. 2002; 24(2–4): 171–7.
  • 8. Hancox N. Thermal effects on polymer matrix composites: Part 1. Thermal cycling. Mater Des. 1998; 19(3): 85–91.
  • 9. Rinaldi G., Maura G. Durable glass–epoxy composites cured at low temperatures—Effects of thermal cycling, UV irradiation and wet environment. Polym Int. 1993; 31(4): 339–45.
  • 10. Heidari-Rarani M., Aliha M.R.M., Shokrieh M.M., Ayatollahi M.R. Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings – An experimental study. Constr Build Mater. 2014; 64: 308–15.
  • 11. Grandidier J.C., Olivier L., Lafarie-Frenot M.C., Gigliotti M. Modeling the pressure dependent solubility in a thermoset resin for simulating pressure accelerated thermo-oxidation tests. Mech Mater. 2015; 84: 44–54.
  • 12. Gall K., Dunn M.L., Zhang Y., Corff B.A. Thermal cycling response of layered gold/polysilicon MEMS structures. Mech Mater. 2004; 36(1–2): 45–55.
  • 13. Abedi M., Moussavi Torshizi S.E., Sarfaraz R. Damage mechanisms in glass/epoxy composites subjected to simultaneous humidity and freeze-thaw cycles. Eng Fail Anal. 2021; 120: 105041.
  • 14. Krzak A., Nowak A.J. Mechanical analysis of multilayer composite materials with duroplastic matrix after exposure to low temperatures. Arch Mater Sci Eng. 2023; 122(2): 49–57.
  • 15. Krzak A., Al-Maqdasi Z., Nowak A.J., Joffe R. Effect of Thermomechanical Loading at Low Temperatures on Damage Development in Glass Fiber Epoxy Laminates. Materials. 2023; 17(1): 16.
  • 16. PN-EN ISO 179 Plastics - Determination of impact strength using the Charpy method - Part 2: Instrumental impact test.
  • 17. PN-EN ISO 179 Plastics - Determination of impact strength using the Charpy method - Part 2: Instrumental impact test.
  • 18. Azhary T., Kusmono, Wildan M.W., Herianto. Mechanical, morphological, and thermal characteristics of epoxy/glass fiber/cellulose nanofiber hybrid composites. Polym Test. 2022; 110: 107560.
  • 19. Nagaraja K.C., Rajanna S., Prakash G.S., Koppad P.G., Alipour M. Studying the effect of different carbon and glass fabric stacking sequence on mechanical properties of epoxy hybrid composite laminates. Compos Commun. 2020; 21: 100425.
  • 20. Wang, T.W.H., Blum, F.D., Dharani, L.R. Effect of interfacial mobility on flexural strength and fracture toughness of glass/epoxy laminates. Journal of Materials Science. 1999; 34, 4873–4882.
  • 21. Reed R.P., Golda M. Cryogenic properties of unidirectional composites. Cryogenics. 1994; 34(11): 909–28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-794c9a05-0de3-4d92-b6e4-9df246e1adf5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.