Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes an alternative possibility for using the motion dynamics of tested particles of the Rayleigh light-scattering mechanism for estimating the degree of coherence of mutually orthogonal fields. The velocity of nanoparticles motion in the inhomogeneous optical field is chosen as the measuring parameter for diagnostics. The direct connection between the velocity of nanoscale particle motion and the degree of coherence of interacting fields is analytically demonstrated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
s. 297--312
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
- Chernivtsy National University, Kotsyubinsky, 2, Chernivtsy, Ukraine
autor
autor
Bibliografia
- [1] LI-GANG WANG, CHENG-LIANG ZHAO, LI-QIN WANG, XUAN-HUI LU, SHI-YAO ZHU, Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere, Optics Letters 32(11), 2007, pp. 1393–1395.
- [2] ANGEL’SKII O.V., USHENKO A.G., ARKHELYUK A.D., ERMOLENKO S.B., BURKOVETS D.N., USHENKO YU.A., Laser polarimetry of pathological changes in biotissues, Optics and Spectroscopy 89(6), 2000, pp. 973–978.
- [3] ANGEL’SKII O.V., USHENKO A.G., ARKHELYUK A.D., ERMOLENKO S.B., BURKOVETS D.N., Scattering of laser radiation by multifractal biological structures, Optika i Spektroskopiya 88(3), 2000, pp. 495–498.
- [4] ASHKIN A., DZIEDZIC J.M., BJORKHOLM J.E., CHU S., Observation of a single-beam gradient force optical trap for dielectric particles, Optics Letters 11(5), 1986, pp. 288–290.
- [5] CHING-HSU CHEN, PO-TSE TAI, WEN-FENG HSIEH, HSIEH W.F., Bottle beam from a bare laser for single-beam trapping, Applied Optics 43(32), 2004, pp. 6001–6006.
- [6] GARCÉS-CHÁVEZ V., ROSKEY D., SUMMERS M.D., MELVILLE H., MCGLOIN D., WRIGHT E.M., DHOLAKIA K., Optical levitation in a Bessel light beam, Applied Physics Letters 85(18), 2004, pp. 4001–4003.
- [7] JING YONG YE, GUOQING CHANG, NORRIS T.B., TSE C., ZOHDY M.J., HOLLMAN K.W., O’DONNELL M., BAKER J.R., Trapping cavitation bubbles with a self-focused laser beam, Optics Letters 29(18), 2004, pp. 2136–2138
- [8] OKAMOTO K., KAWATA S., Radiation force exerted on subwavelength particles near a nanoaperture, Physical Review Letters 83(22), 1999, pp. 4534–4537.
- [9] VOLPE G., QUIDANT R., BADENES G., PETROV D., Surface plasmon radiation forces, Physical Review Letters 96(23), 2006, article 238101.
- [10] ANGELSKY O., MOKHUN A., MOKHUN I., SOSKIN M., The relationship between topological characteristics of component vortices and polarization singularities, Optics Communications 207(1–6), 2002, pp. 57–65.
- [11] ANGELSKY O.V., BURKOVETS D.N., MAKSIMYAK P.P., HANSON S.G., Applicability of the singular--optics concept for diagnostics of random and fractal rough surfaces, Applied Optics 42(22), 2003, pp. 4529–4540.
- [12] ANGELSKY O.V., MAKSIMYAK P.P., RYUKHTIN V.V., HANSON S.G., New feasibilities for characterizing rough surfaces by optical-correlation techniques, Applied Optics 40(31), 2001, pp. 5693–5707.
- [13] ANGELSKY O.V., POLYANSKII P.V., HANSON S.G., Singular-optical coloring of regularly scattered white light, Optics Express 14(17), 2006, pp. 7579–7586.
- [14] ANGELSKY O.V., GORSKY M.P., MAKSIMYAK P.P., MAKSIMYAK A.P., HANSON S.G., ZENKOVA C.YU., Investigation of optical currents in coherent and partially coherent vector fields, Optics Express 19(2), 2011, pp. 660–672.
- [15] ASHKIN A., Optical Trapping and Manipulation of Neutral Particles Using Lasers, Singapore, Hackensack; NJ, World Scientific, 2006.
- [16] BEKSHAEV A.YA, ANGELSKY O.V., SVIRIDOVA S.V., ZENKOVA C.YU., Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows, Advances in Optical Technologies, Vol. 2011, 2011, article 723901.
- [17] DIENEROWITZ M., MAZILU M., REECE P.J., KRAUSS T.F., DHOLAKIA K., Optical vortex trap for resonant confinement of metal nanoparticles, Optics Express 16(7), 2008, pp. 4991–4999.
- [18] ZENKOVA C.YU., GORSKY M.P, SOLTYS I.V., ANGELSKY P.O., Possibilities of using inhomogeneity in light energy distribution for estimating the degree of coherence of superposing waves, Applied 312 C. ZENKOVA et al. Optics 51(10), 2012, pp. C38–C43.
- [19] ANGELSKY O.V., YERMOLENKO S.B., ZENKOVA C.YU., ANGELSKAYA A.O., Polarization manifestations of correlation (intrinsic coherence) of optical fields, Applied Optics 47(29), 2008, pp. 5492–5499.
- [20] ANGELSKY O.V., ZENKOVA C.YU., GORSKY M.P., GORODYNS’KA N.V., Feasibility of estimating the degree of coherence of waves at the near field, Applied Optics 48(15), 2009, pp. 2784–2788.
- [21] ANGELSKY O.V., HANSON S.G., ZENKOVA C.YU., GORSKY M.P., GORODYNS’KA N.V., On polarization metrology (estimation) of the degree of coherence of optical waves, Optics Express 17(18), 2009, pp. 15623–15634.
- [22] ELLIS J., DOGARIU A., PONOMARENKO S., WOLF E., Degree of polarization of statistically stationary electromagnetic fields, Optics Communications 248(4–6), 2005, pp. 333–337.
- [23] MUJAT M., DOGARIU A., WOLF E., A law of interference of electromagnetic beams of any state of coherence and polarization and the Fresnel–Arago interference laws, Journal of the Optical Society of America A 21(12), 2004, pp. 2414–2417.
- [24] ZENKOVA C.YU., GORSKY M.P., MAKSIMYAK P.P., MAKSIMYAK A.P., Optical currents in vector fields, Applied Optics 50(8), 2011, pp. 1105–1112.
- [25] ANGELSKY O.V., BEKSHAEV A.YA., MAKSIMYAK P.P., MAKSIMYAK A.P., HANSON S.G., ZENKOVA C.YU., Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams, Optics Express 20(4), 2012, pp. 3563–3571.
- [26] ANGELSKY O.V., BEKSHAEV A.YA., MAKSIMYAK P.P., MAKSIMYAK A.P., MOKHUN I.I., HANSON S.G., ZENKOVA C.YU., TYURIN A.V., Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow, Optics Express 20(10), 2012, pp. 11351–11356.
- [27] PALIK E.D., Handbook of Optical Constants of Solids, Academic, San Diego, 1985.
- [28] BORN M., WOLF E., Principles of Optics, Pergamon, Oxford, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79493396-7615-400e-b640-f000037f8e97