PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of the VAD out flow cannula positioning on the blood flow in the patient-specific brain supplying arteries

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The primary objective of this research can be divided into two separate aspects. The first one was to verify whether own software can be treated as a viable source of data for the Computer Aided Design (CAD) modelling and Computational Fluid Dynamics CFD analysis. The second aspect was to analyze the influence of the Ventricle Assist Device (VAD) outflow cannula positioning on the blood flow distribution in the brain-supplying arteries. Patient-specific model was reconstructed basing on the DICOM image sets obtained with the angiographic Computed Tomography. The reconstruction process was performed in the custom-created software, whereas the outflow cannulas were added in the SolidWorks software. Volumetric meshes were generated in the Ansys Mesher module. The transient boundary conditions enabled simulating several full cardiac cycles. Performed investigations focused mainly on volume flow rate, shear stress and velocity distribution. It was proven that custom-created software enhances the processes of the anatomical objects reconstruction. Developed geometrical files are compatible with CAD and CFD software - they can be easily manipulated and modified. Concerning the numerical simulations, several cases with varied positioning of the VAD outflow cannula were analyzed. Obtained results revealed that the location of the VAD outflow cannula has a slight impact on the blood flow distribution among the brain supplying arteries.
Rocznik
Strony
619--635
Opis fizyczny
Bibliogr. 29 poz., il. kolor., wykr.
Twórcy
autor
  • Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
autor
  • Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
autor
  • Institute of Turbomachinery, Lodz University of Technology, Lodz, Poland
Bibliografia
  • [1] Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., and Jiménez, M. C.: Heart disease and stroke statistics-2017 update: a report from the American Heart Association, Circulation, 135, 10, e146-e603, 2017.
  • [2] Bonnemain, J., Malossi, A. C. I., Lesinigo, M., Deparis, S., Quarteroni, A., and von Segesser, L. K.: Numerical simulation of left ventricular assist device implantations: comparing the ascending and the descending aorta cannulations, Med. Eng. Phys., 35, 10, 1465-1475, 2013.
  • [3] Thunberg, C.A., Gaitan, B.D., Arabia, F.A., Cole, D.J., and Grigore, A.M.: Ventricular assist devices today and tomorrow, J Cardiothor Vasc An, 24, 4, 656-680, 2010.
  • [4] Laumen, M., Kaufmann, T., Timms, D., Schlanstein, P., Jansen, S., Gregory, S., ... and Steinseifer, U.: Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch, Artif Organs, 34, 10, 798-806, 2010.
  • [5] Fraser, K. H., Taskin, M. E., Griffith, B. P., and Wu, Z. J.: The use of computational fluid dynamics in the development of ventricular assist devices, Med Eng Phys, 33, 3, 263-280, 2011.
  • [6] Caruso, M. V., Gramigna, V., Rossi, M., Serraino, G. F., Renzulli, A., and Fragomeni, G.: A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patient-specific aortic model, Int. J. Numer. Meth. Bio., 31, 2, 2015.
  • [7] Karmonik, C., Partovi, S., Loebe, M., Schmack, B., Weymann, A., Lumsden, A. B. and Ruhparwar, A.: Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta, J Thorac Cardiov Sur, 147, 4, 1326-1333, 2014.
  • [8] Patil, N. P., Sabashnikov, A., Mohite, P. N., Garcia, D., Weymann, A., Zych, B. and De Robertis, F.: De novo aortic regurgitation after continuous-flow left ventricular assist device implantation, Ann Thorac Surg, 98, 3, 850-857, 2014.
  • [9] Callington, A., Long, Q., Mohite, P., Simon, A., and Mittal, T. K.: Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design, J Thorac Cardiov Sur, 150, 3, 696-704, 2015.
  • [10] Schmid, C., Jurmann, M., Birnbaum, D., Colombo, T., Falk, V., Feltrin, G. and Gummert, J.: Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis, J Heart Lung Transpl, 27, 3, 253-260, 2008.
  • [11] DiGiorgi, P. L., Smith, D. L., Naka, Y., and Oz, M. C.: In vitro characterization of aortic retrograde and antegrade flow from pulsatile and non-pulsatile ventricular assist devices, J Heart Lung Transpl, 23, 2, 186-192, 2004.
  • [12] Nawata, K., Nishimura, T., Kyo, S., Hisagi, M., Kinoshita, O., Saito, A. and Ono, M.: Outcomes of midterm circulatory support by left ventricular assist device implantation with descending aortic anastomosis, J Artif Organs, 13, 4, 197- 201, 2010.
  • [13] Verdonck, P. R., Siller, U., De Wachter, D. S., De Somer, F., and Van Nooten, G.: Hydrodynamical comparison of aortic arch cannulae, Int J Artif Organs, 21, 11, 705-713, 1998.
  • [14] Kapetanakis, E. I., Stamou, S. C., Dullum, M. K., Hill, P. C., Haile, E., Boyce, S. W. and Corso, P. J.: The impact of aortic manipulation on neurologic outcomes after coronary artery bypass surgery: a risk-adjusted study, Ann Thorac Surg, 78, 5, 1564-1571, 2004.
  • [15] Kaufmann, T. A. S., Schmitz-Rode, T., Moritz, A., and Steinseifer, U.: Effect of outflow cannula placement and pulsatility of blood pumps on cerebral blood flow and wall shear stress during cardiac assist, Blucher Mech Eng Proc, 822-835, 2012.
  • [16] May-Newman, K., Hillen, B., and Dembitsky, W.: Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta, ASAIO journal, 52, 2, 132-139, 2006.
  • [17] Yang, N., Deutsch, S., Paterson, E.G., and Manning, K.B.: Numerical study of blood flow at the end-to-side anastomosis of a left ventricular assist device for adult patients, J Biomech Eng, 131, 11, 111005, 2009.
  • [18] Kar, B., Delgado III, R. M., Frazier, O. H., Gregoric, I. D., Harting, M. T., Wadia, Y. and Freund, J.: The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: implantation technique and computer flow modeling, Tex. Heart. I. J., 32, 3, 294, 2005.
  • [19] Tyfa, Z. and Strzelecki, M.: MeMoS—A software tool for extraction of anatomical structures data from 3D medical images, In Signal Processing: Algorithms, Architec- tures, Arrangements, and Applications (SPA), 97-102, IEEE, 2016.
  • [20] Jóźwik, K., and Obidowski, D.: Numerical simulations of the blood flow through vertebral arteries, J. Biomech., 43, 177-185, 2010.
  • [21] Reorowicz, P., Obidowski, D., Klosiński, P., Szubert, W., Stefańczyk, L. and Jóźwik, K.: Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region, J Biomech, 47, 1642-1651, 2014.
  • [22] Tyfa, Z., Obidowski, D., Reorowicz, P., Stefa´nczyk, L., Fortuniak, J., and Jóźwik, K.: Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries, Biocybern Biomed Eng, 38, 2, 228-242, 2018.
  • [23] Bochenek, A., and Reicher, M.: Human Anatomy, III, PZWL, Warsaw, (in Polish), 1974.
  • [24] Michajlik, A., Ramotowski, W.: Human Anatomy and Physiology, PZWL, War- saw, (in Polish), 354-356, 1996.
  • [25] Meierhofer, C., Schneider, E. P., Lyko, C., Hutter, A., Martinoff, S., Markl, M. and Fratz, S.: Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study, Eur Heart J Cardiovasc Imaging, 14, 8, 797-804, 2012.
  • [26] Uchino, A., Sawada, A., Takase, Y., Fujita, I.and Kudo, S.: Extreme fenestration of the basilar artery associated with cleft palate, nasopharyngeal mature teratoma, and hypophyseal duplication, Eur Radiol, 12, 8, 2087-2090, 2002.
  • [27] Rennert, J., Ullrich, W. O. and Schuierer, G.: A rare case of supraclinoid internal carotid artery (ICA) fenestration in combination with duplication of the middle cerebral artery (MCA) originating from the ICA fenestration and an associated aneurysm, Clin Neuroradiol, 23, 2, 133-136, 2013.
  • [28] Oktar, S. O., Y¨ucel, C., Karaosmanoglu, D., Akkan, K., Ozdemir, H., Tokgoz, N. and Tali, T.: Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase-contrast MR imaging, Am J Neuroradiol, 27, 2, 363-369, 2006.
  • [29] Ford, M. D., Alperin, N., Lee, S. H., Holdsworth, D. W. and Steinman, D. A.: Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries, Physiol meas, 26, 4, 477, 2005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79415e9c-ab71-4b85-8ca2-6db1ace33497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.