PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dozymetria 3D w radioterapii. Rys historyczny, typy dozymetrów, charakterystyka i aplikacje

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
3D dosimetry in radiotherapy. Historical outline, types of dosimeters, characteristics and applications
Języki publikacji
PL
Abstrakty
PL
Niniejszy artykuł dotyczy dozymetrii 3D w radioterapii. Zawiera rys historyczny, opis pierwszych prac w Polsce, charakterystykę głównych typów dozymetrów 3D, a także przykłady ich zastosowań. Dozymetria 3D obejmuje: dozymetr 3D często w odpowiednim pojemniku, wybrany system skanowania 3D, protokół kalibracji i aplikacji dozymetru, protokół skanowania 3D oraz pakiet oprogramowania do szybkiego i łatwego przetwarzania danych dozymetrycznych w 3D. Niektóre elementy takiego systemu dozymetrii są dostępne w ośrodkach radioterapii, inne dostarczają producenci. Typowy dozymetr 3D to matryca ze związkami wrażliwymi na promieniowanie jonizujące, które ulegają konwersji pod wpływem tego promieniowania. Zmianę w dozymetrze można zmierzyć za pomocą następujących technik obrazowania: rezonans magnetyczny (RM), RM w radioterapii pod kontrolą RM (MRgRT), tomografia komputerowa (TK), tomografia wiązki stożkowej (CBCT), optyczna tomografia komputerowa (optyczna TK lub OTK), ultrasonografia (USG) oraz tomografia fluorescencyjna (TF). Istnieje kilka rodzajów dozymetrów 3D, takich jak dozymetry żelowe Fricke, polimerowe dozymetry żelowe, żele radiochromowe i radiochromowe tworzywa sztuczne, dozymetry odkształcalne, dozymetry o gęstości zbliżonej do tkanki płucnej, dozymetry wielofazowe, które imitują różne tkanki w jednym pojemniku, takie jak płuca i mięśnie. Każdy typ dozymetru może być mierzony w 3D przy użyciu jednej lub kilku technik obrazowania. Wynik obrazowania jest przetwarzany przy użyciu kodów Matlab napisanych dla danego eksperymentu – aplikacji lub za pomocą komercyjnych pakietów oprogramowania, takich jak polyGe- Vero® i polyGeVero®-CT. Przetwarzanie danych uzyskanych po skanowaniu jest specyficzne dla konkretnego typu dozymetru. Dozymetry 3D charakteryzują się określoną dawką progową, quasi-liniową i dynamiczną odpowiedzią na dawkę, dawką saturacyjną, rozdzielczością dawki, podobieństwem tkankowym, powtarzalnością, zależnością odpowiedzi dozymetru na napromienienie od rodzaju promieniowania o określonej energii i mocy dawki oraz pod względem integralności rozkładu dawki w czasie. Dozymetry 3D wykorzystywane są zarówno do testowania urządzeń radioterapeutycznych, jak i klinicznie do weryfikacji rozkładów dawek obliczonych za pomocą systemów planowania leczenia (SPL) w licznych technikach napromieniania pacjentów, z wykorzystaniem wiązek zewnętrznych w technikach 3D i 4D: terapia z modulacją intensywności (IMRT), dynamiczna terapia łukowa (VMAT) oraz stereotaksja (SRS i SRT) za pomocą noża gamma (gamma knife) lub CyberKnife czy w radioterapii sterowanej obrazowaniem (IGRT) z użyciem CBCT lub RM, protonoterapii, a także za pomocą źródeł wprowadzanych do tkanek pacjenta w brachyterapii. W pracy wskazano również aktualne trendy rozwojowe w dozymetrii 3D.
EN
This work concerns 3D radiotherapy dosimetry. It includes a historical outline, starting from the first works and further development of dosimetry in the world, the first works in Poland, main types of 3D dosimeters, main features of the dosimeters and their applications. The 3D dosimetry system includes: a 3D dosimeter in customised container, a selected 3D scanning system, a dosimeter calibration and application protocol, a 3D scanning protocol and a software package for quick and easy 3D data processing. Some elements of such a 3D dosimetry system are available in hospitals, others are provided by manufacturers. A typical 3D dosimeter is a matrix with radiation active compounds that convert under the influence of ionizing radiation. This change can be measured by the following scanning techniques: standalone magnetic resonance imaging (MRI), MRI in MR-guided radiotherapy (MRgRT), computed tomography (CT), cone-beam computed tomography (CBCT), optical computed tomography (optical CT or OCT), ultrasonography (USG) and fluorescence tomography (FT). There are several types of 3D dosimeters, such as Fricke-based gel dosimeters, polymer gel dosimeters, radiochromic gels and plastics, lungs-mimicking dosimeters, combined dosimeters mimicking different tissues in one vial, such as both lungs and muscles. Each type of the dosimeters can be measured in 3D using one or more 3D scanning techniques. The scan outcome is processed using in-house Matlab codes or commercial software packages such as polyGe- Vero® or polyGeVero®-CT. The processing of data obtained after scanning is specific for a particular type of dosimeter. 3D dosimeters are mainly characterized by threshold dose, quasi-linear and dynamic dose response, saturation dose, dose resolution, tissue equivalence, reproducibility, dependence on the type of radiation, radiation energy and dose rate, and in-time integrity of the dose distribution in 3D. 3D dosimeters have been used both in terms of tests of radiotherapy devices and to verify dose distributions calculated by treatment planning systems (TPS) in numerous patient irradiation techniques using external beams in 3D and 4D techniques: intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), stereotactic radiosurgery (SRS) and stereotactic radiation therapy (SRT) with a gamma knife or CyberKnife, image-guided radiotherapy (IGRT) using CBCT or MRI, proton therapy as well as with sources introduced into the patient’s tissues in brachytherapy. Current trends in 3D dosimetry are also outlined.
Rocznik
Strony
27--42
Opis fizyczny
Bibliogr. 116 poz., rys., tab., wykr.
Twórcy
  • Katedra Inżynierii Mechanicznej, Informatyki Technicznej i Chemii Materiałów Polimerowych, Wydział Technologii Materiałowych i Wzornictwa Tekstyliów, Politechnika Łódzka, ul. Żeromskiego 116, 90-543 Łódź
  • GeVero Co., Łódź, Polska (http://polygevero.com)
autor
  • Zakład Planowania Radioterapii, Wojewódzkie Wielospecjalistyczne Centrum Onkologii i Traumatologii im. M. Kopernika w Łodzi, Pabianicka 62, 90-543 Łódź, Polska
Bibliografia
  • 1. M.J. Day, G. Stein: Chemical effects of ionizing radiation in some gels, Nature, 166, 1950, 146–147.
  • 2. H.L. Andrews, R.E. Murphy, E.J. LeBrun: Gel dosimeter for depth dose measurements, Rev Sci Instrum, 28(5), 1957, 329–332.
  • 3. H. Fricke, S. Morse: The chemical action of roentgen rays on dilute ferrous sulfate solutions as a measure of dose, Am J Roentgenol Rad Ther, 18, 1927, 430–432.
  • 4. J.C. Gore, Y.S. Kang, R.J. Schultz: Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging, Phys Med Biol, 29(10), 1984, 1189–1197.
  • 5. L.E. Olsson, S. Petersson, L. Ahlgren: Ferrous sulphate gels for determination of absorbed dose distributions using MRI technique: basic studies, Phys Med Biol 34(1), 1989, 43–52.
  • 6. R.J. Schulz, A.E. de Guzman, D.E. Nguten, J.C. Gore: Dose response curves for Fricke-infused gels as obtained by nuclear magnetic resonance, Phys Med Biol, 35(12), 1990, 1611–1622.
  • 7. T. Kron, P. Metealfe, J.M. Pope: Investigation of the tissue equivalence of gels used for NMR dosimetry, Phys Med Biol, 38(1), 1993, 139–150.
  • 8. C. Duzenli, R. Sloboda, D. Robinson: A spin–spin relaxation rate investigation of the gelatine ferrous sulphate NMR dosimeter, Phys Med Biol, 39(10), 1994, 1577–1592.
  • 9. M.J. Maryanski, J.C. Gore, R.P. Kennan, R.J. Schulz: NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI, Magn Reson. Imaging, 11(2), 1993, 253–258.
  • 10. M.J. Maryanski, C. Audet, J.C. Gore: Effects of crosslinking and temperature on the dose response of a BANG polymer gel dosimeter, Phys Med Biol, 42, 1997, 303–311.
  • 11. J.C. Gore, M. Ranade, M.J. Maryanski: Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner, Phys Med Biol, 41(12), 1996, 2695–2704.
  • 12. M.J. Maryanski, R.J. Schultz, G.S. Ibbott, J.C. Gatenby, J. Xie, D. Horton, J.C. Gore: Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter, Phys Med Biol, 39(9), 1994, 1437–1455.
  • 13. M.J. Maryanski, G.S. Ibbott, P. Eastman, R.J. Schultz, J.C. Gore: Radiation therapy dosimetry using magnetic resonance imaging of polymer gels, Med Phys, 23(5), 1996, 699–705.
  • 14. S. Brown, A. Venning, Y. De Deene, P. Vial, L. Oliver, J. Adamovics, C. Baldock: Radiological properties of the PRESAGE and PAGAT polymer dosimeters, Appl Radiat Isot, 66(12), 2008, 1970–1974.
  • 15. T. Olding, O. Holmes, L.J. Schreiner: Cone beam optical computed tomography for gel dosimetry I: scanner characterization, Phys Med Biol, 55(10), 2010, 2819–2840.
  • 16. K. Jordan, N. Avvakumov: Radiochromic leuco dye micelle hydrogels: I. Initial investigation, Phys Med Biol, 54(22), 2009, 6773–6789.
  • 17. A.T. Nasr, K. Alexander, L.J. Schreiner, K.B. McAuley: Leuco-crystal-violet micelle gel dosimeters: I. Influence of recipe components and potential sensitizers, Phys Med Biol, 60(12), 2015, 4665–4683.
  • 18. A.T. Nasr, K.M. Alexander, T. Olding, L.J. Schreiner, K.B. McAuley: Leuco-crystal-violet micelle gel dosimeters: II. Recipe optimization and testing, Phys Med Biol, 60(12), 2015, 4685–4704.
  • 19. E. Pappas, E. Zoros, A. Moutsatsos, V. Peppa, K. Zourari, P. Karaiskos, P. Papagiannis: On the experimental validation of model-based dose calculation algorithms for 192Ir HDR brachytherapy treatment planning, Phys Med Biol, 62(10), 2017, 4160–4182.
  • 20. C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K.B. McAuley, M. Oldham, L.J. Schreiner: Polymer gel dosimetry, Phys Med Biol, 55(5), 2010, R1–R63.
  • 21. M. Dudek, M. Piotrowski, P. Maras, M. Jaszczak, M. Kozicki: Anisotropic diffusion of Fe ions in Fricke-XO-Pluronic F-127 and Fricke-XO-gelatine 3D radiotherapy dosimeters, Phys Med Biol, 66(15), 2021, 155005.
  • 22. M. Kozicki, M. Jaszczak, P. Maras, R. Naglik, M. Dudek, S. Kadlubowski, R. Wach: Preliminary study on a 3D lung mimicking dosimeter based on Pluronic F-127 matrix, Radiat Phys Chem, 185, 2021, 109479.
  • 23. M. Jaszczak, E. Sasiadek, S. Kadlubowski, M. Dudek, M. Kozicki: Preliminary study on a new 3D radiochromic KI-Pluronic F-127 gel dosimeter for radiotherapy, Radiat Phys Chem, 185, 2021, 109507.
  • 24. M. Piotrowski, P. Maras, S. Kadłubowski, M. Kozicki: Study of the Optimal Composition and Storage Conditions of the Fricke−XO−Pluronic F−127 Radiochromic Dosimeter, Materials, 15(3), 2022, 984.
  • 25. M. Kozicki, M. Jaszczak, P. Maras: Features of PABIGnx 3D polimer gel as an ionising radiation dosimeter, Materials, 15(7), 2022, 2550.
  • 26. Y. De Deene: Radiation dosimetry by use of radiosensitive hydrogels and polymers: mechanisms, state-of-the-art and perspective from 3D to 4D, Gels, 8(9), 2022, 599.
  • 27. Y. De Deene, A. Venning, C. Hurley, B.J. Healy, C. Baldock: Dose–response stability and integrity of the dose distribution of various polymer gel dosimeters, Phys Med Biol, 47(14), 2002, 2459–2470.
  • 28. J. Vandecasteele, Y. De Deene: On the validity of 3D polimer gel dosimetry, II: physico-chemical effects, Phys Med Biol, 58(1), 2013, 43–61.
  • 29. Y. De Deene, K. Vergote, C. Claeys, C. De Wagter: The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels, Phys Med Biol, 51(3), 2006, 653–673.
  • 30. P.M. Fong, D.C. Keil, M.D. Does, J.C. Gore: Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere, Phys Med Biol, 46(12), 2001, 3105–3113.
  • 31. J.P. Fernandes, B.F. Pastorello, D.B. de Araujo, O. Baffa: Formaldehyde increases MAGIC gel dosimeter melting point and sensitivity, Phys Med Biol, 53(4), 2008, N53–N58.
  • 32. A. Jirasek, M. Hilts, K.B. McAuley: Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry, Phys Med Biol, 55, 2010, 5269–5281.
  • 33. H. Johnston, M. Hilts, J. Carrick, A. Jirasek: An x-ray CT polimer gel dosimetry prototype: II. Gel characterization and clinical application, Phys Med Biol, 57(10), 2012, 3155–3175.
  • 34. E. Pappas, T. Maris, A. Angelopoulos, M. Paparigopoulou, L. Sakelliou, P. Sandilos, S. Voyiatzi, L. Vlachos: A new polymer gel for magnetic resonance imaging (MRI) radiation dosimetry, Phys Med. Biol, 44(10), 1999, 2677.
  • 35. M. Kozicki, M. Jaszczak, P. Maras, M. Dudek, M. Cłapa: On the development of a VIPARnd radiotherapy 3D polymer gel dosimeter, Phys Med Biol, 62(3), 2017, 986–1008.
  • 36. M. Kozicki, A. Berg, P. Maras, M. Jaszczak, M. Dudek: Clinical radiotherapy application of N-vinylpyrrolidone-containing 3D polimer gel dosimeters with remote external MR-reading, Phys Med, 69, 2020, 134–146.
  • 37. M. Jaszczak, P. Maras, M. Kozicki: Characterization of a new N-vinylpyrrolidone- containing polymer gel dosimeter with Pluronic F-127 gel matrix, Radiat Phys Chem, 177, 2020, 109125.
  • 38. M. Kozicki, M. Jaszczak, P. Maras, M. Dudek: A chemical evolution of NVP-containing VIPAR-family 3D polymer gel dosimeters – a brief overview, J Phys: Conf Series, 1305, 2019, 012067.
  • 39. M. Jaszczak, R. Wach, P. Maras, M. Dudek, M. Kozicki: Substituting gelatine with Pluronic F-127 matrix in 3D polymer gel dosimeters can improve nuclear magnetic resonance, thermal and optical properties, Phys Med Biol, 63, 2018, 175010.
  • 40. P. Maras, M. Kozicki: Fast isocenter determination using 3D polimer gel dosimetry with kilovoltage cone-beam CT reading and the polyGeVero-CT software package for linac quality assurance in radiotherapy, Materials, 15(19), 2022, 6807.
  • 41. M. Kozicki, P. Maras, A.C. Karwowski: Software for 3D radiotherapy dosimetry. Validation, Phys Med Biol, 59(15), 2014, 4111–4136.
  • 42. K.A. Rabaeh, R.E. Al-Tarawneh, M.M. Eyadeh, I.M.E. Hammoudeh, M.T.M. Shatnawi: Improved Dose Response of N-(hydroxymethyl) acrylamide Gel Dosimeter with Calcium Chloride for Radiotherapy, Gels, 8(2), 2022, 78.
  • 43. M. Khan, G. Heilemann, W. Lechner, D. Georg, A. Berg: Basic properties of a new polymer gel for 3D-dosimetry at high dose-rates typical for FFF irradiation based on dithiothreitol and methacrylic acid (MAGADIT): sensitivity, range, reproducibility, accuracy, dose rate effect and impact of oxygen scavenger, Polymers, 11(10), 2019, 1717.
  • 44. B. Moftah, A.A. Basfar, A.A. Almousa, A. Kafi, K.A. Rabaeh: Novel 3D polymer gel dosimeters based on N-(3-Methoxypropyl) acrylamide (NMPAGAT) for quality assurance in radiation oncology, Radiat Measur, 135, 2020, 106372.
  • 45. F. d’Errico, L. Lazzeri, D. Dondi, M. Mariani, M. Marrale, S.O. Souza, S. Gambarini: Novel GTA-PVA Fricke gels for three-dimensional dose mapping in radiotherapy, Radiat Meas, 106(2), 2017, 612–617.
  • 46. S. Gallo, E. Artuso, M.G. Brambilla, G. Gambarini, C. Lenardi, A.F. Monti, A. Torresin, E. Pignoli, I. Veronese: Characterization of radiochromic poly(vinylalcohol)–glutaraldehyde Fricke gels for dosimetry in external X-ray radiation therapy, J Phys D: Appl Phys, 52(22), 2019, 225601.
  • 47. K.A. Rabaeh, M.M. Eyadeh, T.F. Hailat, B.G. Madas, F.M. Aldweri, A.M. Almomani, S.I. Awad: Improvement on the performance of chemically cross-linked Fricke methylthymol-blue radiochromic gel dosimeter by addition of dimethyl sulfoxide, Radiat Measur, 141, 2021, 106540.
  • 48. S. Babic, J. Battista, K. Jordan, An apparent threshold dose response in ferrous xylenol-orange gel dosimeters when scanned with a yellow light source, Phys Med Biol, 53(6), 2008, 1637–1650
  • 49. M. Piotrowski, P. Maras, R. Wach, S. Kadlubowski, M. Kozicki: Impact of salt on thermal stability and dose response of the Fricke-XO-Pluronic F-127 3D radiotherapy dosimeter, Materials, 15(15), 2022, 5223.
  • 50. M. Kozicki, K. Kwiatos, S. Kadlubowski, M. Dudek: TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation, Phys Med. Biol, 62(14), 2017, 5668–5690.
  • 51. K. Kwiatos, P. Maras, S. Kadlubowski, Z. Stempień, M. Dudek, M. Kozicki: Tetrazolium salts-Pluronic F -127 gels for 3D radiotherapy dosimetry, Phys Med Biol, 63, 2018, 095012.
  • 52. M. Kozicki, M. Jaszczak, K. Kwiatos, P. Maras, S. Kadlubowski, R. Wach, M. Dudek: Tetrazolium salts-Pluronic F-127 gels for 3D radiotherapy dosimetry, J Phys Conf Series, 1305, 2019, 012035.
  • 53. S.-I. Hayashi, K. Ono, K. Fujino, S. Ikeda, K. Tanaka: Novel radiochromic gel dosimeter based on a polyvinyl alcohol-Iodide complex, Radiat Measur, 131, 2020, 106226.
  • 54. S. Babic, J. Battista, K. Jordan: Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel, Phys Med. Biol, 54(22), 2009, 6791–6808.
  • 55. A. Tajaldeen, S. Alghamdi: Investigation of dosimetric impact of organ motion in static and dynamic conditions for three stereotactic ablative body radiotherapy techniques: 3d conformal radiotherapy, intensity modulated radiation therapy, and volumetric modulated arc therapy by using presage 3d dosimeters, Exp Oncol, 41(2), 2019, 153–159.
  • 56. M. Alqathami, J. Adamovics, R. Benning, G. Qiao, M. Geso, A. Blencowe: Evaluation of ultra-sensitive leucomalachite dye derivatives for use in the PRESAGE® dosimeter, Radiat Phys Chem, 85, 2013, 204–209.
  • 57. E.M. Høye, P.S. Skyt, E.S. Yates, L.P. Muren, J.B.B. Petersen, P. Balling: A new dosimeter formulation for deformable 3D dose verification, J Phys: Conf Ser, 573, 2015, 012067.
  • 58. S.V. Jensen, L.B. Valdetaro, P.R. Poulsen, P. Balling, J.B.B. Petersen, L.P. Muren: Dose-response of deformable radiochromic dosimeters for spot scanning proton therapy, Phys Imaging Radiat Oncol, 16, 2020, 134–137.
  • 59. Y. De Deene, P.S. Skyt, R. Hil, J.T. Booth: FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties, Phys Med Biol, 60(4), 2015, 1543–1563.
  • 60. Y. De Deene, K. Vergote, C. Claeys, C. De Wagter: Three dimensional radiation dosimetry in lung-equivalent regions by use of a radiation sensitive gel foam: proof of principle, Med Phys, 33(7), 2006, 2586–2597.
  • 61. P. Haraldsson, A. Karlsson, E. Wieslander, H. Gustavsson, S.Å.J. Bäck: Dose response evaluation of a low-density normoxic polimer gel dosimeter using MRI, Phys Med Biol, 51(4), 2006, 919–928.
  • 62. P. Maras, M. Jaszczak, M. Kozicki: Basic features of VIC-T dosimeter with spiral CT readout, CT scanning conditions and data processing with a new polyGeVero-CT software package, Radiat Phys Chem, 189, 2021, 109730.
  • 63. M.L. Mather, Y. De Deene, A.K. Whittaker, G.P. Simon, R. Rutgers, C. Baldock: Investigation of ultrasonic properties of PAG and MAGIC polymer gel dosimeters, Phys Med Biol, 47(24), 2002, 4397–4409.
  • 64. M.L. Mather, A.K. Whittaker, C. Baldock: Ultrasound evaluation of polymer gel dosimeters, Phys, Med, Biol, 47(9), 2002, 1449–1458.
  • 65. T.J. Atkins, V.F. Humphrey, F.A. Duck, M.A. Tooley: Investigation of ultrasonic properties of MAGIC gels for pulse-echo gel dosimetry, J Phys: Conf Ser, 250, 2010, 012075.
  • 66. S.J. Doran: The history and principles of optical computed tomography for scanning 3-D radiation dosimeters: 2008 update, J Phys: Conf Ser, 164, 2009, 012020.
  • 67. N. Gharehaghaji, H.A. Dadgar, Dosimetric verification of small fields in the lung using lung-equivalent polymer gel and Monte Carlo simulation, J Can Res Ther, 14, 2018, 278–286.
  • 68. L.J. Schreiner, Reviewing three dimensional dosimetry: basics and utilization as presented over 17 Years of DosGel and IC3Ddose, J Phys: Conf Ser, 847, 2017, 12001.
  • 69. A. Jirasek, M. Hilts: Dose calibration optimization and error propagation in polymer gel dosimetry, Phys Med Biol, 59(3), 2014, 597–614.
  • 70. A. Jirasek, Q. Matthews, M. Hilts, G. Schulze, M.W. Blades, R.F.B. Turner: I nvestigation o f a 2D t wo-point m aximum e ntropy regularization method for signal-to-noise ratio enhancement: application to CT polymer gel dosimetry, Phys Med Biol, 51(10), 2006, 2599–2617.
  • 71. A. Jirasek, J. Carrick, M. Hilts: An x-ray CT polymer gel dosimetry prototype: I. Remnant artefact removal, Phys Med Biol, 57(10), 2012, 3137–3153.
  • 72. M. Hilts, A. Jirasek: Adaptive mean filtering for noise reduction in CT polymer gel dosimetry, Med Phys, 35(1), 2008, 344–355.
  • 73. M. Hilts, C. Audet, C. Duzenli, A. Jirasek: Polymer gel dosimetry using x-ray computed tomography: a feasibility study, Phys Med. Biol, 45(9), 2000, 2559–2571.
  • 74. M. Hilts, A. Jirasek, C. Duzenli: Technical considerations for implementation of x-ray CT polymer gel dosimetry, Phys Med Biol, 50(8), 2005, 1727–1745.
  • 75. M. Kozicki, P. Maras, A.C. Karwowski: Introduction to polyGeVero ® s oftware f or 3 D r adiotherapy d osimetry, GeVero Co. publication, November 4, 2015, pages 1–17 (publikacja dostępna online w bazie ResearchGate: https://www.researchgate.net/publication/283711431_INTRODUCTION_to_polyGeVeroR _software_for_3D_radiotherapy_dosimetry).
  • 76. J.M. Warman, M.P. de Haas, L.H. Luthjens, T. Yao, J. Navarro-Campos, S. Yuksel, J. Aarts, S. Thiele, J. Houter, W. In Het Zandt: FluoroTome 1: An apparatus for tomographic imaging of radio- fluorogenic (RFG) gels, Polymers (Basel), 11(11), 2019, 1729.
  • 77. J.M. Warman, M.P. de Haas, L.H. Luthjens, A.G. Denkova, T. Yao: A radio-fluorogenic polymer-gel makes fixed fluorescent images of complex radiation fields, Polymers 10(6), 2018, 685.
  • 78. T. Maeyama, S. Hase: Nanoclay gel-based radio-fluorogenic gel dosimeters using various fluorescence probes, Radiat Phys Chem 151, 2018, 42–46.
  • 79. P.A. Sandwall, B.P. Bastow, H.B. Spitz, H.R. Elson, M. Lamba, W.B. Connick, H. Fenichel: Radio-fluorogenic gel dosimetry with coumarin, Bioengineering, 5(3), 2018, 53.
  • 80. H. Sugier (ed.): Laboratorium Chemii Fizycznej, Wyd. Politechniki Łódzkiej, Łódź, 1996.
  • 81. L.J. Schreiner: Review of Fricke gel dosimeters, J Phys: Conf Ser, 3, 2004, 9–21.
  • 82. G.M. Liosi, D. Dondi, D.A. Vander Griend, S. Lazzaroni, G. D’Agostino, M. Mariani: Fricke-gel dosimeter: Overview of xylenol orange chemical behavior, Radiat Phys Chem, 140, 2017, 74–77.
  • 83. K. Penev, K. Mequanint: Controlling sensitivity and stability of ferrous–xylenol orange–gelatin 3D gel dosimeters by doping with phenanthroline-type ligands and glyoxal, Phys Med Biol, 58(6), 2013, 1823–1838.
  • 84. E.P. Pappas, V. Peppa, C.J. Hourdakis, P. Karaiskos, P. Papagiannis: On the use of a novel Ferrous Xylenol-orange gelatin dosimeter for HDR brachytherapy commissioning and quality assurance testing, Phys Med, 45, 2018, 162–169.
  • 85. M. Kozicki, P. Kujawa, J.M. Rosiak: P ulse r adiolysis s tudy o f d iacrylate macromonomer in aqueous solution, Radiat Phys Chem, 65(2), 2002, 133–139.
  • 86. M. Kozicki, K. Filipczak, J.M. Rosiak: Reactions of hydroxyl radicals, H atoms and hydrated electrons with N,N’-methylenebisacrylamide in aqueous solution. A pulse radiolysis study, Radiat Phys Chem, 68(5), 2003, 827–835.
  • 87. M. Kozicki: How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter, Radiat Phys Chem, 80(12), 2011, 1419–1436.
  • 88. A. Berg, A. Ertl, E. Moser: High resolution polymer gel dosimetry by parameter selective MR-microimaging on a whole body scanner at 3 T, Med Phys, 28(5), 2001, 833–843.
  • 89. Y. De Deene, R. Van de Walle, E. Achten, C. De Wagter: Mathematical analysis and experimental investigation of noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry, Signal Process, 70(2), 1998, 85–101.
  • 90. P. Sandilos, P. Baras, E. Georgiou, K. Dardoufas, P. Karaiskos, P. Papagiannis, T. Paschalis, E. Tatsis, M. Torrens, L. Vlahos: Fast, three-dimensional, MR Imaging for polymer gel dosimetric applications involving high dose and steep dose gradients, Nucl. Instrum. Methods Phys. Res. A, 569(2), 2006, 572–576.
  • 91. A. Skorupa, A. Woznica, M. Ciszek, M. Staniszewski, M. Kijonka, M. Kozicki, B. Wozniak, A. Orlef, A. Polanski, Ł. Boguszewicz, M. Sokoł: Application of high field magnetic resonance microimaging in polymer gel dosimetry, Med Phys, 47(8), 2020, 3600–3613.
  • 92. P. Sobotka, M. Kozicki, P. Maras, Ł. Boniecki, L. Kacperski, A.W. Domański: Optical scanner for 3D radiotherapy polymer gel dosimetry, Acta Phys Pol A, 122, 2012, 969–974.
  • 93. T. Olding, L.J. Schreiner: Cone-beam optical computed tomography for gel dosimetry II: imaging protocols, Phys Med Biol, 56, 2011, 1259–1279.
  • 94. M. Kakakhel, T. Kairn, P. Charles, J.V. Trapp: A feasibility study of multislice Xray CT imaging of gel dosimeters using the “zero scan” method, J Appl Clin Med Phys, 15(4), 2014, 367–371.
  • 95. M.B. Kakakhel, A. Jirasek, H. Johnston, T. Kairn, J.V. Trapp: Improving the quality of reconstructed X-ray CT images of polimer gel dosimeters: zero-scan coupled with adaptive mean filtering, Australas Phys Eng Sci Med, 40(1), 2017, 159–165.
  • 96. D.A. Low, W.B. Harms, S. Mutic, J.A. Purdy: A technique for the quantitative evaluation of dose distributions, Med Phys, 25(5), 1998, 656–661.
  • 97. D.A. Low, J.F. Dempsey, R. Venkatesan, S. Mutic, J. Markman, E.M. Haacke, J.A. Purdy: Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy, Med. Phys, 26(8), 1999, 1542–1551.
  • 98. E. Pantelis, A.K. Karlis, M. Kozicki, P. Papagiannis, L. Sakelliou, J.M. Rosiak: Polymer gel water equivalence and relative Energy response with emphasis on low photon energy dosimetry in brachytherapy, Phys Med Biol, 49(15), 2004, 3495–3514.
  • 99. De Deene Y: On the accuracy and precision of gel dosimetry, J Phys: Conf Ser, 56, 2006, 72–85.
  • 100. P. Maras, praca doktorska pt. Opracowanie metody pomiaru i weryfikacji rozkładu dawek promieniowania jonizującego w 3D w środowisku klinicznym w radioterapii, Politechnika Łódzka, 2017 (promotor: prof. dr hab. inż. M. Kozicki).
  • 101. C. Baldock, M. Lepage, S.Å.J. Bäck, P.J. Murry, P.M. Jayasekera, D. Porter, T. Kron: Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence, Phys Med. Biol, 46, 2001, 449–460.
  • 102. M. Kozicki, P. Maras: Features of 2Day.QA® as a 2D radiation dosimeter, Phys Medica, 104, 2022, 23–31.
  • 103. E.E. Klein, J. Hanley, J. Bayouth, F.-F. Yin, W. Simon, S. Dresser, C. Serago, F. Aguirre, L. Ma, B. Arjomandy, C. Liu, C. Sandin, T. Holmes: Task Group 142 report: Quality assurance of medical accelerators, Med Phys, 36(9), 2009, 4197–4212.
  • 104. Rozporządzenie Ministra Zdrowia z dnia 12 grudnia 2022 r. w sprawie testów eksploatacyjnych urządzeń radiologicznych i urządzeń pomocniczych, Dziennik Ustaw Rzeczpospolitej Polskiej, Warszawa, dnia 27 grudnia 2022 r. Poz. 2759.
  • 105. J.J.W. Lagendijk, B.W. Raaymakers, A.J.E. Raaijmakers, J. Overweg, K.J. Brown, E. M. Kerkhof, R.W. van der Put, B. Hårdemark, M. van Vulpen, U.A. van der Heide: MRI/linac integration, Radiother Oncol, 86(1), 2008, 25–29.
  • 106. B.G. Fallone, B. Murray, S. Rathee, T. Stanescu, S. Steciw, S. Vidakovic, E. Blosser, D. Tymofichuk: First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system, Med Phys, 36(6), 2009, 2084–2088.
  • 107. P.J. Keall, M. Barton, S. Crozier: The Australian magnetic resonance imaging–linac program, Semin Radiat Oncol, 24(3), 2014, 203–206.
  • 108. A. Wang, A. Maslowski, P. Messmer, M. Lehmann, A. Strzelecki, E. Yu, P. Paysan, M. Brehm, P. Munro, J. Star Lack, D. Seghers: Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter – Part II: System modeling, scatter correction, and optimization, Med Phys, 45(5), 2018, 1914–1925.
  • 109. D.A. Jaffray, J.H. Siewerdsen, J.W. Wong, A.A. Martinez: Flat-Panel Cone-Beam Computed Tomography for image guided radiation therapy, Int J Radiation Oncology Biol Phys, 53(5), 2002, 1337–1349.
  • 110. S. Dorsch, P. Mann, C. Lang, P. Hearing, A. Runz, C.P. Karger: Feasibility of polymer gel-based measurements of radiation isocenter accuracy in magnetic fields, Phys Med Biol, 63(11), 2018, 11NT02.
  • 111. S. Dorsch, P. Mann, A. Elter, A. Runz, S. Kluter, C.P. Karger: Polymer gel-based measurements of the isocenter accuracy in an RM- -LINAC, J Phys: Conf Ser, 1305, 2019, 012007.
  • 112. S. Dorsch, P. Mann, A. Elter, A. Runz, C.K. Spindeldreier, S. Klüter, C.P. Karger: Measurement of isocenter alignment accuracy and image distortion of an 0.35 T RM-linac system, Phys Med. Biol, 64(20), 2019, 205011.
  • 113. K. Pant, C. Umeh, M. Oldham, S. Floyd, W. Giles, J. Adamson: Comprehensive radiation and imaging isocenter verification using NIPAM kV-CBCT dosimetry, Med Phys, 47(3), 2020, 927−936.
  • 114. T. Depuydt, R. Penne, D. Verellen, J. Hrbacek, S. Lang, K. Leysen, I. Vandevondel, K. Poels, T. Reynders, T. Gevaert, M. Duchateau, K. Tournel, M. Boussaer, D. Cosentino, C. Garibaldi, T. Solberg, M. De Ridder: Computer-aided analysis of star shot films for high-accuracy radiation therapy treatment units, Phys Med. Biol, 57(10), 2012, 2997–3011.
  • 115. A. Gonzalez, I. Castro, J.A. Martinez: A procedure to determine the radiation isocenter size in a linear accelerator, Med Phys, 31(6), 2004, 1489−1493.
  • 116. Q. Fan, S. Zhou, Y. Lei, S. Li, M.A. Zhang: Quality assurance approach for linear accelerator mechanical isocenters with portal images, Int J Med Phys Clin Eng Radiat Oncol, 7(01), 2018, 100−114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-793935dd-9de5-4825-9e09-d4aa9ad3581c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.