PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of longwall mining on slope stability – A case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent decades, many open pit (OP) mines have either already made the decision or are at the planning stage to change their mining activity from OP to underground (UG) to remain competitive. Technically, before the OP ends its operation, both OP and UG mining will have to be operated simultaneously for a certain period of time. It is well known that UG operation causes subsidence, discontinuous deformations, and changes in hydrogeological conditions. In case of UG operation located below the OP mine, slope deformation can be expected as a result of subsidence induced by UG exploitation. This paper presents a numerical analysis of slope stability under the influence of the longwall mining operation at the Cao Son OP mine in Vietnam. All calculation variants were performed using the Finite Difference Method code, FLAC. In order to evaluate slope stability of the OP slope, various geometry configurations showing advances of both OP and UG extractions were examined. Based on the outcomes, assessments on OP slope are presented, and then, practical actions regarding the location and direction of UG extraction are recommended, with an aim to minimize the impact of underground mining on OP slope.
Wydawca
Rocznik
Strony
282--295
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Glowny Instytut Gornictwa, Katowice, Poland
Bibliografia
  • [1] P.M.V. Nguyen, Z. Niedbalski, Numerical modelling of open pit (OP) to underground (UG) transition in coal mining. Studia Geotechnica et Mechanica. 38 (3), 35–48 (2016), DOI: 10.1515/sgem-2016-0023.
  • [2] W.F. Visser, Optimization of the OP/UG Transition. Development of a Software Tool for Optimization of the Transition Depth and the Open Pit Slope Angle – Main report. Technische Universiteit Delft (2006).
  • [3] P.M.V. Nguyen, Optimization of crown pillar in transition from open pit to underground for the Quang Ninh coal basin, Vietnam. Ph.D. diss., AGH University of Science and Technology, KraKow (2017) (in Polish).
  • [4] S.S. Peng, H.S. Chiang, Longwall Mining, John Wiley and Sons, Inc., New York (1984).
  • [5] A. Moss, S. Diachenko, P. Townsend, Interaction between the Block Caving and the pit slope at Palabora mine. The South African Institute of Mining and Metallurgy. International Symposium, Stability of rock slopes in open pit mining and civil engineering situations (2006).
  • [6] A.D. Campbell, E. Mu, C.R. Lilley, Cave propagation and open pit interaction at the Ernest Henry mine. Seventh international conference and exhibition on mass mining, Sydney (2016).
  • [7] D.A. Diaz, M.G. Schellman, Geomechanical status and action plans for interaction between Andina subsidence crater and Los Bronces open pit, in PM Dight (ed.), Proceedings of the First Asia Pacific Slope Stability in Mining Conference, Australian Centre for Geomechanics, Perth. 613–628 (2016), DOI: 10.36487/ACG_rep/1604_41_Diaz.
  • [8] H. Peng, Q. Cai, W. Zhou, J. Shu, G. Li, Study on Stability of Surface Mine Slope Influenced by Underground Mining below the Endwall Slope. Procedia Earth and Planetary Science. 2: 7–13 (2011), DOI: 10.1016/j.proeps.2011.09.002.
  • [9] D. Payne, M. Martin, B. Coutts, D. Lynch, Highwall stability implications from longwall mining at Broadmeadow mine, in Naj Aziz and Bob Kininmonth (eds.), Proceedings of the 2019 Coal Operators Conference, Mining Engineering, University of Wollongong, 91–102 (2019).
  • [10] P.P. Bahuguna, A.M.C. Srivastava, N.C. Saxena, A critical review of mine subsidence prediction methods. Min. Sci. Technol. 13(3): 369–382 (1991), DOI: 10.1016/0167-9031(91)90716-P.
  • [11] G. Brauner, Subsidence due to underground mining. US Bur. Mines Rep., IC 8571 (1973).
  • [12] B.N. Whittaker, D.J. Reddish, Subsidence: Occurrence, Prediction and Control. Elsevier, Amsterdam (1989).
  • [13] H. Kratzsch, Mining Subsidence Engineering Springer. Berlin: 543 (1983).
  • [14] H. Keinhorst, Calculations of surface subsidence in Emscher. In: 25 Jahre der Emschergenossenschaft 1900–1925 (in German), Essen 53–64 (1925;)
  • [15] R. Bals, Problem of mining subsidence prediction. Stuttgart, Germany: Deutscher Markscheider-Verein e.V, Mitteilungen aus dem Markscheidewesen (in German). 42/43: 98–111 (1932).
  • [16] S. Knothe, Time influence on shaping of subsidence trough. Archive of Mining Science. 1: 21–31 (1953).
  • [17] S. Knothe, Prediction of mining influence (in Polish), Katowice, Poland (1984).
  • [18] J. Barbato, B. Hebblewhite, R. Mitra, K. Mills, Prediction of horizontal movement and strain at the surface due to longwall coal mining. International Journal of Rock Mechanics and Mining Sciences. 84: 105–118 (2016), DOI: 10.1016/j.ijrmms.2016.02.006.
  • [19] H.D. Dahl, D.S. Choi, Some case studies of mine subsidence and its mathematical modelling, Application of Rock Mechanics In: E.R. Hoskins Editor, Proc. Syrup. on Rock Mechanics, South Dakota, 1–21 (1973).
  • [20] H.J. Siriwardane, J. Amanat, Modelling of subsidence caused by longwall mining using finite element and displacement discontinuity methods. In: Proc. Int. Conf. on Numerical Methods in Geo- mechanics, 1901–1910 (1988).
  • [21] M.A. Coulthard, A.J. Dutton, Numerical modelling of subsidence induced by underground coal mining. In: Key Questions in Rock Mechanics, Proc. U.S. Symp. on Rock Mechanics, 29th Minneapolis, 529–536 (1988).
  • [22] K.V. Shankar, B.B. Dhar, Subsidence prediction resulting from underground mining - a numerical modelling technique. Proc. Indian Geotech. Conf., Allahabad. 319–324 (1988).
  • [23] G. Yang, Y.P. Chugh, Z. Yu, M.D.G. Salamon, A numerical approach to subsidence prediction and stress analysis in coal mining using a laminated model. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 30(7): 1419–1422 (1993), DOI: 10.1016/0148-9062(93)90130-6.
  • [24] X.L. Yao, D.J. Reddish, B.N. Whittaker, Non-linear finite element analysis of surface subsidence arising from inclined seam extraction. Int. J. Rock Mech. Min. Sci. 30(4): 31–41 (1993), DOI: 10.1016/0148-9062(93)91724-W.
  • [25] R.P. Singh, R.N. Yadav, Prediction of subsidence due to coal mining in Raniganj coalfield, West Bengal, India. Engineering Geology. 39(2), 103–111 (1995), DOI: 10.1016/0013-7952(94)00062-7.
  • [26] P. Lloyd, N. Mohammad, D.J. Reddish. Surface subsidence prediction techniques for UK coalfields – An innovative numerical modelling approach, Mining Congress of Turkey, (1997)
  • [27] L.R. Alejano, P. Ramírez-Oyanguren, J. Taboada, Predictive methodology for subsidence due to flat and inclined coal seam mining, International Journal of Rock Mechanics and Mining Sciences. 36(4), 475–491 (1999), DOI: 10.1016/S0148-9062(99)00022-4
  • [28] K. Tajdus, New method for determining the elastic parameters of rock mass layers in the region of underground mining influence. International Journal of Rock Mechanics and Mining Sciences. 46(8):1296–1305 (2009), DOI: 10.1016/j.ijrmms.2009.04.006.
  • [29] K. Tajdus, Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation. Journal of Rock Mechanics and Geotechnical Engineering. 7(4): 395–403 (2015), DOI: 10.1016/j.jrmge.2015.03.012.
  • [30] Keilich W. Numerical modelling of mining subsidence, upsidence and valley closure using UDEC. PhD thesis. University of Wollongong (2009).
  • [31] M. Wesolowski, J. Białek, P. Kołodziejczyk, F. Plewa, Modelowanie wpływów eksploatacji górniczej przy wykorzystaniu modeli numerycznych, Gliwice (2010).
  • [32] A.M. Suchowerska Iwanec, J.P. Carter, J.P. Hambleton, Geomechanics of subsidence above single and multi-seam coal mining. Journal of Rock Mechanics and Geotechnical Engineering. 8(3): 304–313 (2016), DOI: 10.1016/j.jrmge.2015.11.007.
  • [33] Institute of Mining Science and Technology, Assessments on transition from open pit to underground in the Cao Son mine, Unpublished materials, Hanoi, Vietnam, 2012 and 2016 - updated version (in Vietnamese).
  • [34] N.A. Do, D. Dias, P. Oreste, V.D. Dinh, Stability of tunnels excavated along anisotropic rock masses. Proceeding of international conference on earth sciences and sustainable geo-resources development, Hanoi, Vietnam (2016).
  • [35] D.H. Duong, H.Q. Dao, M. Turek, A. Koteras, The status and prospect of mining technology in Vietnam underground coal mines. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 146–154 (2019), DOI: 10.29227/IM-2019-02-68.
  • [36] FLAC, Version 7.0, User's manual. Itasca Consulting Group Inc., Minneapolis (2011); software available at www.itascacg.com
  • [37] https://www.google.com/maps/ [accessed 2019]
  • [38] S.S. Peng, H.S. Chiang. Longwall Mining, John Wiley and Sons, Inc., New York (1984).
  • [39] M. Bai, F. Kendorski, D. Van Roosendaal, Chinese And North American High-Extraction Underground Coal Mining Strata Behavior And Water Protection Experience and Guidelines. Proceedings of 14th International Conference on Ground Control in Mining, Morgantown (1995).
  • [40] M. Mazurkiewicz, Z. Piotrowski, A. Tajduś, Lokowanie odpadów w kopalniach podziemnych. cz. II Geoinżynieria. Biblioteka Szkoły Eksploatacji Podziemnej, p. 129 (1997).
  • [41] K. Heasley, A review of Subsidence and Fire Potential at the Major Battery Site, Report no. 2004-P-0017 (2004).
  • [42] A. Biliński, Metoda doboru obudowy ścianowych wyrobisk wybierkowych i chodnikowych do warunków pola eksploatacyjnego. Prace naukowe – Monografie CMG KOMAG. Gliwice (2005).
  • [43] H. Wang, D. Zhang, X. Wang, W. Zhang, Visual Exploration of the Spatiotemporal Evolution Law of Overburden Failure and Mining-Induced Fractures: A Case Study of the Wangjialing Coal Mine in China. Minerals, 7(3): 35 (2017), DOI: 10.3390/min7030035.
  • [44] H. Yavuz, An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines. Journal of Rock Mechanics and Mining Sciences & Geomechanics, 41 (2): 193–205 (2004), DOI: 10.1016/S1365-1609(03)00082-0.
  • [45] K. Tajduś, New method for determining the elastic parameters of rock mass layers in the region of underground mining influence. Int. J. Rock Mech. Mining Sci. 46 (8), 1296–1305 (2009), DOI: 10.1016/j.ijrmms.2009.04.006.
  • [46] Y.M. Cheng, J.A. Wang, G.X. Xie, W.B. Wei, Three-dimensional analysis of coal barrier pillars in tailgate area adjacent to the fully mechanized top caving mining face. Int. J. Rock Mech. Mining Sci. 47 (8), 1372–1383 (2010), DOI: 10.1016/j.ijrmms.2010.08.008.
  • [47] Y. Jiang, H. Wang, S. Xue, Y. Zhao, J. Zhu, X. Pang, Assessment of mitigation of coal bump risk during extraction of an island longwall panel. Int. J. Coal Geol. 95: 20–33 (2012), DOI: 10.1016/j.coal.2012.02.003.
  • [48] S.S. Ahmed, A. Marwan, Y. Gunzburger, V. Renaud, 3D Numerical Simulation of the Goaf Due to Large-Scale Longwall Mining. International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology” GeoMEast 2017: Numerical Analysis of Nonlinear Coupled Problems, 121–131 (2017).
  • [49] M. Cała, Slope stability analysis with numerical methods, Monographs 171, AGH University of Science and Technology, Krakow (2007) (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7936df85-c46f-44c5-869a-b68fa429a9d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.