PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Substrates with different magnetic properties versus iron-nickel film electrodeposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hereby work presents the iron-nickel alloys electroplated on the different metallic substrates (aluminium, silver, brass) using galvanostatic deposition, with and without presence of the external magnetic field (EMF). The films were obtained in the same electrochemical bath composition - mixture of iron and nickel sulphates (without presence of additives) in the molar ratio of 2 : 1 (Ni : Fe), the electric current density (50.0 mA/cm2), and the time (3600 s). The mutual alignment of the electric (E) and magnetic field (B) was changeable - parallel and perpendicular. The source of EMF was a set of two permanent magnets (magnetic field strength ranged from 80 mT to 400 mT). It was analysed the surface microstructure, composition, morphology, thickness and the mechanical properties (roughness, work of adhesion). The surface morphology and the thickness of films were observed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). The elemental composition of all FeNi films was measured using Wavelength Dispersive X-Ray Fluorescence (WDXRF). The crystalographic analysis of the deposits was carried out by X-Ray Diffraction. Depending on the used substrate, modified external magnetic field orientation influenced the tribological and physio-chemical properties of the deposited layers. The diamagnetic substrates and EMF application reduced the FeNi thickness and the average crystallites size, in contrast to the paramagnetic substrate. Parallel EMF increased the value of the tribological parameters for CuZn and Ag but decreased for Al. The content of FeNi structure was rising in the case of diamagnetic substrate and the dependence was opposite on the paramagnetic substrate.
Rocznik
Strony
157--170
Opis fizyczny
Bibliogr. 31 poz., rys., wykr.
Twórcy
  • Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland, phone +48 85 746 93 97, fax +48 85 746 94 00
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
  • Faculty of Chemistry, University of Bialystok, ul. K. Ciołkowskiego 1K, 15-245 Białystok, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology in Kraków, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Chemistry, University of Bialystok, ul. K. Ciołkowskiego 1K, 15-245 Białystok, Poland
Bibliografia
  • [1] Hwang BJ, Santhanam R, Lin YL. Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite. Electrochim Acta. 2001;46:2843-53. DOI: 10.1016/S0013-4686(01)00495-9.
  • [2] Kołodziejczyk K, Miękoś E, Zieliński M, Jaksender M, Szczukocki D, Czarny K, et al. Influence of constant magnetic field on electrodeposition of metals, alloys, conductive polymers, and organic reactions. J Solid State Electrochem. 2018;22:1629-47. DOI: 10.1007/s10008-017-3875-x.
  • [3] Palomar-Pardave M, Scharifker BR, Arce EM, Romero-Romo M. Nucleation and diffusion-controlled growth of electroactive centers reduction of protons during cobalt electrodeposition. Electrochim Acta. 2005;50:4736-45. DOI: 10.1016/j.electacta.2005.03.004.
  • [4] Krause A, Uhlemann M, Gebert A, Schultz L. A study of nucleation, growth, texture and phase formation of electrodeposited cobalt layers and the influence of magnetic fields. Thin Solid Films. 2006;1694-700. DOI: 10.1016/j.tsf.2006.06.003.
  • [5] Zubar TI, Sharko SA, Tishkevich DI, Kovaleva NN, Vinnik DA, Gudkova SA, et al. Anomalies in Ni-Fe nanogranular films growth. Alloy Compd. 2018;20:2306-15. DOI: 10.1016/j.jallcom.2018.03.245.
  • [6] Zubar TI, Fedosyuk VM, Trukhanov SV, Tishkevich DI, Michels D, Lyakhov D, et al. Method of surface energy investigation by lateral AFM: application to control growth mechanism of nanustructured NiFe films. Sci Rep-UK. 2020;10:14411. DOI: 10.1038/s41598-020-71416-w.
  • [7] Dragos O, Chiriac H, Lupu N, Grigoras M, Tabakovic I. Anomalous codeposition of fcc NiFe nanowires with 5-55% Fe and their morphology, crystal structure and magnetic properties. J Electrochem Soc. 2016;163:D83-94. DOI: 10.1149/2.0771603jes.
  • [8] Ohba M, Scarazzato T, Espinosa DCR, Panossian Z. Study of metal electrodeposition by means of simulated and experimental polarization curves: Zinc deposition on steel electrodes. Electrochim Acta. 2019;309:86-103. DOI: 10.1016/j.electacta.2019.04.074.
  • [9] Kuru H, Colak Aytekin N, Köckar H, Haciismailoğlu M, Alper M. Effect of NiFe layer thickness on properties of NiFe/Cu superlattices electrodeposited on titanium substrate. J Mater Sci-Mater EL. 2019;30:17879-89. DOI: 10.1007/s10854-019-02140-z.
  • [10] Fazli S, Bahrololoom ME. Electrodeposition of nanostructured permalloy and permalloy-magnetite composite coatings and investigation of their magnetic properties. Metall Mater Trans A. 2016;47A. DOI: 10.1007/s11661-016-3575-7.
  • [11] Gurrappa I, Binder L. Electrodeposition of nanostructured coatings and their characterization - a review. Sci Technol Adv Mater. 2008;9:043001. DOI: 10.1088/1468-6996/9/4/043001.
  • [12] Tudela I, Zhang Y, Pal M, Kerr I, Mason TJ, Cobley AJ. Ultrasound-assisted electrodeposition of nickel: Effect of ultrasonic power on the characteristics of thin coatings. Surf Coat Technol. 2015;264:49-59. DOI: 10.1016/j.surfcoat.2015.01.020.
  • [13] Nurjaman SF, Aziz N. Optimization of tin magneto electrodeposition under additive electrolyte influence using Taguchi method application. Mater Sci Forum. 2016;860:85-91. DOI: 10.4028/www.scientific.net/MSF.860.85.
  • [14] Rousse C, Msellak K, Fricoteaux P, Merienne E, Chopart J-P. Magnetic and electrochemical studies on electrodeposited Ni-Fe alloys. Magnetohydrodynamics. 2006;42:371-8. DOI: 10.22364/mhd.42.4.3
  • [15] Gong J, Riemer S, Kautzky M, Tabakovic IJ. Composition gradient, structure, stress, roughness and magnetic properties of 5-500 nm thin NiFe films obtained by electrodeposition. Magn Magn Mater. 2016;398:64-9. DOI: 10.1016/j.jmmm.2015.09.036.
  • [16] Gamburg YD, Zangari G. Theory and Practice of Metal Electrodeposition. New York, Dordrecht, Heidelberg, London: Springer; 2011. ISBN: 9781441996688. DOI: 10.1007/978-1-4419-9669-5.
  • [17] Monzon LMA, Coey JMD. Magnetic fields in electrochemistry: The Lorentz forces. A mini-review. Electrochem Commun. 2014;42:38-41. DOI: 10.1016/j.elecom.2014.02.006.
  • [18] Asai S. Recent development and prospect of electromagnetic processing of materials. Sci Technol Adv Materials. 2000;1:191-200. DOI: 10.1016/S1468-6996(00)00016-4.
  • [19] Sedlaček M, Podgornik B, Vizintin J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol Int. 2012;48:102-12. DOI: 10.1016/j.triboint.2011.11.008.
  • [20] Sedlaček M, Gregorčič P, Podgornik B. Use of the roughness parameters Ssk and Sku to control friction - a method for designing surface texturing. Tribol Trans. 2017;60:260-6. DOI: 10.1080/10402004.2016.1159358.
  • [21] Svahn F, Kassman-Rudolphi A, Wallen E. The influence of surface roughness on friction and wear of machine element coatings. Wear. 2003;254:1092-8. DOI: 10.1016/S0043-1648(03)00341-7.
  • [22] Jiang J, Arnell RD. The effect of substrate surface roughness on the wear of DLC coatings. Wear. 2000;239:1-9. DOI: 10.1016/S0043-1648(99)00351-8.
  • [23] Yang D, Wang Q, Tang J, Xia F, Zhou W, Wen Y. Correlation analysis of roughness surface height distribution parameters and maximum mises stress. Surf. Topogr.: Metrol Prop. 2021;10:015046. DOI: 10.1088/2051-672X/ac5d6b.
  • [24] Okamoto N, Wang F, Watanabe T. Adhesion of electrodeposited copper, nickel and silver films on copper, nickel and silver substrates. J Japan Inst Metals Materials. 2004;45:3330-3. DOI: 10.2320/matertrans.45.3330.
  • [25] Persson K. Materials Data on FeNi3 (SG:221) by Materials Project. 2015. DOI: 10.17188/1190197.
  • [26] Persson K. Materials Data on FeNi (SG:123) by Materials Project. 2016. DOI: 10.17188/1197364.
  • [27] Kądziołka-Gaweł M, Zarek M, Popiel E, Chrobak A. The crystal structure and magnetic properties of selected fcc FeNi and Fe40Ni40B20 alloys. A. Phys Pol A. 2009;117:412-4. DOI: 10.12693/APhysPolA.117.412.
  • [28] Trong DN, Long VC. Effects of number of atoms, shell thickness, and temperature on the structure of Fe nanoparticles amorphous by molecular dynamics method. Appl Mech Mater. 2021;6894514:1-12. DOI: 10.1155/2021/9976633.
  • [29] Bokuniaeva AO, Vorokh AS. Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. J Phys: Conf Ser. 2019;1410:012057. DOI: 10.1088/1742-6596/1410/1/012057.
  • [30] Białostocka A, Klekotka U, Kalska-Szostko B. Modulation of iron-nickel layers composition by an external magnetic field. Chem Eng Commun. 2020;206:804-14. DOI: 10.1080/00986445.2018.1528239.
  • [31] Egbu J, Ohodnicki Jr PR, Baltrus JP, Talaat A, Wright RF, McHenry ME. Analysis of surface roughness and oxidation of FeNi-based metal amorphous nanocomposite alloys. J All Com. 2022;912:165155. DOI: 10.1016/j.allcom.2022.165155.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7934aa8a-a06f-4f1d-9522-a08bf583e319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.