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Abstract 
 

The aim of this paper is to test efficiency of automatic implementation of selected cryptographic algorithms in 
two families of popular-grade FPGA devices from Xilinx: Spartan-3 and Spartan-6. The set of algorithms 
include the Advanced Encryption Standard (AES) used worldwide as a symmetric cipher along with two hash 
algorithms: Salsa20 (developed with ECRYPT Stream Cipher Project) and Keccak permutation function (core 
of the new SHA-3 standard). The ciphers were expressed in 5 architectures: the basic iterative one (one instance 
of a round in hardware) and its four derivatives created by loop unrolling and pipelining. With each of the 
architectures implemented in both Spartan devices this gave the total of 30 test cases, which, upon automatic 
implementation, created a comprehensive and consistent base for comparison of the ciphers, applied 
architectures and FPGA devices used for implementation. 
 
1. Introduction 
 

Safe and reliable operation of contemporary complex 
technical systems very often rests on secure and 
dependable data acquisition, transmission or storage, 
hence cryptography methods have recently become 
an indispensable element in design and analysis of 
system safety and stability. Intensive research 
activity in this area led to development of a number 
of methods which are used in symmetric or 
asymmetric cryptography, digital fingerprinting or 
message authentication. If very high processing 
speed is required these algorithms need to be 
implemented in dedicated, often configurable 
hardware. 
The aim of this paper is to test efficiency of 
automatic implementation of selected cryptographic 
algorithms in two families of popular-grade FPGA 
devices from Xilinx: more mature and established 
Spartan-3 ([15]) and newer, more advanced Spartan-
6 ([16]). The set of cryptographic algorithms include 
the Advanced Encryption Standard (AES) – a 
symmetric block cipher along with two hash 
algorithms: Salsa20 and Keccak-f[400]. 
In the literature there are many proposals for efficient 
hardware implementations of these particular 
algorithms ([1], [4]-[8], [10]-[14], [17]). This paper 
does not aim at supplementing these kind of efforts. 

Instead, the goal  of this work is to explore essential 
properties of the ciphers when they are implemented 
in an FPGA device in the basic iterative  
organization – one cipher round instantiated in 
hardware – along with other variants created by loop 
unrolling, optionally with pipelining. 
Each of the three algorithms was realized in five 
architecture variants and all of them were 
implemented on two hardware platforms, so in total 
30 test cases were investigated. This created a 
comprehensive and consistent base for comparison of 
the ciphers, architectures and FPGA devices. 
The text is organized as follows. In the next chapter 
operation of the three algorithms is briefly discussed 
in the light of their further implementation in 
hardware. Then, in chapter 3 we will present the 
selected set of five organizations and comment on 
their specific realization for each of the algorithms. 
Finally, in chapter 4 parameters of the 30 test cases 
obtained after implementation will be presented 
which will provide a base for discussion of size, 
performance and efficiency characteristics of the 
algorithms in different hardware configurations. 
 
2. Presentation of the algorithms 
 

In the following discussion we will use the ‘⊕’ and 
‘<<’ symbols for elementary operations executed 
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over bit vectors: bitwise exclusive or (xor) and left 
rotation by a given number of bits. Furthermore, nr 
will denote number of rounds repeated iteratively in 
the complete loop of the cipher. 
 
2.1. Advanced Encryption Standard (AES) 
 

The algorithm, which is formally defined in [9],  
belongs to a class of symmetric block ciphers, i.e. it 
uses the same secret key to both encryption and 
decryption of a fixed-size block of data – so called 
state. In this work we investigate the most widely 
used AES-128 version where both the data and the 
key are 128b long. From functional point of view 
organization of the cipher is a substitution-
permutation network which processes the state in 
a series of 10 almost identical rounds. Each round 
uses its own key which is generated from the user-
supplied external key by a separate key expansion. 
Data encoding and key expansion share very similar 
set of elementary transformations and constitute two 
128b-wide processing paths which needs to be 
executed in parallel one along another. 
The state is interpreted as 4x4 array of bytes and the 
round apply four elementary transformations upon it 
in the following order (see the right part of Figure 1): 
- substitution SBox() where each byte of the state is 
replaced by another one according to a specific 
invertible static transcoding function; 
- row shifting SR() where each the k-th row (k = 
0…3) of the state array is rotated by k columns to the 
left in encryption or to the right in decryption; 
- column mixing MC() operating on whole state 
columns rather than on individual bytes and 
calculating its result through an involved series of 
shift and xor operations (which models polynomial 
multiplication modulo x4 + 1 over GF(28) ); 
- key mixing where the round key is simply xor’ed 
bit-by-bit over the state vector. 
The complete encryption path consist of one 
introductory round which is followed by 10 regular 
ones (of which the last one is slightly modified). Let: 
P –  a 128b plaintext (the input), 
Bi – a state block that enters the i-th regular round Ri 

(i = 0 denotes the introductory round), 
K –  external user key, 
Ki –  the key generated in the expansion for round i, 
C –  encoded ciphertext (the output). 
The whole encoding can be expressed in the 
following way: 
 
   B1 = P ⊕ K 
   Bi+1 = MC( SR( SBox( Bi ) ) ) ⊕ Ki,   i = 1 … 9 
   C = SR( SBox ( B10 ) ) ⊕ K10 
 

Additionally to this, the keys Ki need to be generated 
from the main key K by another computations which, 
in turn, operate on 32b words wi, i = 0..43. Initially, 
the first four words are filled with bits from the user 
key: 
 
   { w0, w1, w2, w3} = K 
 
and then, for i = 1..10, every group of four words that 
creates round key Ki is computed as follows: 
 
   w4i = SBox( w4i-1 << 8 ) ⊕ Rcon[ i ] ⊕ w4i-4 
   w4i+1 = w4i ⊕ w4i-3 
   w4i+2 = w4i+1 ⊕ w4i-2 
   w4i+3 = w4i+2 ⊕ w4i-1 
   Ki = {w4i, w4i+1, w4i+2, w4i+3 } 
 
Here the SBox transformation uses exactly the same 
substitution boxes as the cipher path and the Rcon is 
a vector of ten 32b constants statically defined in the 
standard. Data flow is visualized in the left part of 
Figure 1. 
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Figure 1. Data flow of one AES round: key 
expansion and cipher paths 
 
Compared to other algorithms discussed in this paper 
the AES has the largest diversity of internal 
processing with additional hardware required for key 
expansion introducing extra complications. Although 
the state size is 128b, together with key expansion 
words the entire data path is 256b wide. 
 
2.2. Salsa20 hash function 
 

At its core the Salsa20 ([2]) is essentially a 512b 
hash function, i.e. Salsa20( x ) is a 512b hash value 
computed for the input x of the same size. Internally 
the computations are executed over the 512b state q 
which is divided into 16 x 32b words: q = (q0, q1, … 
q15). The state is transformed in 20 rounds with 
different permutations of the state words passed as 
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the input to even- and odd-numbered rounds but 
otherwise the in-round processing is identical.  
In Salsa20 there is no key expansion path; instead, 
the external key is embedded into the input x 
producing directly half of the 16 state words and then 
the 512b vector is processed in its entirety. 
Moreover, in the entire algorithm only the following 
three basic transformations are used, all operating on 
32b words: 
- bitwise exclusive or (xor) of the two words; 
- arithmetic sum of the two words taken mod 232, 

denoted as +; 
- rotation of a word to the left by some given 

(constant) number of positions. 
The basic organizational unit of the cipher is 
a quarterround function which transforms a group of 
four state words: quarterrorund(w0, w1, w2, w3) = 
(w0’, w1’, w2’, w3’) in the following way: 
 
   w1’ = w1 ⊕ ( (w0 + w3) << 7 ) 
   w2’ = w2 ⊕ ( (w1’ + w0) << 9 ) 
   w3’ = w3 ⊕ ( (w2’ + w1’) << 13 ) 
   w0’ = w0 ⊕ ( (w3’ + w2’) << 18 ) 
 
The flow of data which results from the above 
equations is graphically visualized in Figure 2. 
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Figure 2. Transformations of the state words in the 
Salsa20 quarterround block 
 
Four quarterrounds operating in parallel transform 
the entire state q and constitute a single round of the 
cipher. Depending on its input, a round can be one of 
the two kinds: a row round or a column round. A row 
round function is defined as rowround( q ) = q’ such 
that 
 
   (q0’, q1’, q2’, q3’)  = quarterround(q0, q1, q2, q3) 

   (q5’, q6’, q7’, q4’)  = quarterround(q5, q6, q7, q4) 

   (q10’, q11’, q8’, q9’) = quarterround(q10, q11, q8, q9) 

   (q15’, q12’, q13’, q14’) = 
quarterround(q15, q12, q13, q14) 

 
whereas a column round function is defined as 
columnround ( q ) = q’ such that 

   ( q0’, q4’, q8’, q12’ ) = quarterround( q0, q4, q8, q12 ) 

   ( q5’, q9’, q13’, q1’ ) = quarterround( q5, q9, q13, q1 ) 

   ( q10’, q14’, q2’, q6’ ) = 
  quarterround( q10, q14, q2, q6 ) 

   ( q15’, q3’, q7’, q11’ ) = 
 quarterround( q15, q3, q7, q11 ) 

 
A column round followed by a row round make up 
so called double round: 
 
   doubleround( q ) = rowround( columnround( q ) ) 
 
and the entire hash is computed by applying ten 
times the double round to the input x and then by 
adding the result: 
 
   Salsa20( x ) = doubleround10( x ) + x 
 
Compared to the AES Salsa20 has much simpler 
elementary operations: all of them operate bit-wise 
on 32b words only and, in particular, they do not 
involve 8b substitution boxes. Also uniformity of the 
rounds is very good with no need to expand the key. 
Nevertheless, with 512b wide data path and 20 
rounds the entire cipher is significantly bigger in 
size. 
 
3. Keccak-f[400] permutation function 
 

The Keccak algorithm – or, more precisely, the 
family of 7 different in size Keccak algorithms – are 
built around Keccak-f[b] permutation functions: for 
parameter l = 0, 1, … 6 each function operates on 
a state A consisting of b = 25 × 2l bits (b = 25, 50, 
100, 200, 400 800, or 1600) where a single word of 
w = 2l bits length is called a lane. Every function 
computes its result processing the state in a series of 
nr = 12 +  2l rounds (nr = 12, 14, 16, 18, 20, 22, or 
24). In this work we include Keccak-f[400] in the 
comparison – with 20 rounds, 16b lanes and 400b 
state. 
The reference specification in [3] describes one 
round of Keccak-f[b] as a sequence of 5 
transformations: 

   Round = ι ○χ ○π ○ρ ○θ 

Computing the permutation is equivalent just to 
applying the round function nr times: 
 
Keccak- f[ b]( A ) 
{ 
 for i = 0 to nr – 1 
  A = Round[ b]( A, RC[ i ] ); 
 Return A;  
} 
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where RC[ i ]  are w-bit constants that are 
generated by specific binary linear feedback shift 
register (LSFR) defined in the specification. 
Operation of a single round is specified in a simple 
pseudo-code as follows: 
 
Round[b]( A, RC )  
{ 
 --  θ step 
 for x = 0 to 4 
  C[ x] = A[ x,0] xor A[ x,1] xor A[ x,2] 
         xor A[ x,3] xor A[ x,4]; 
 for x = 0 to 4 
  D[ x] = C[ x-1] xor (C[ x+1] << 1); 
 for y = 0 to 4 
  for x = 0 to 4 
   A[ x,  y] = A[ x,  y] xor D[ x]; 
 -- ρ and π steps 
 for y = 0 to 4 
  for x = 0 to 4 
   B[ y, 2*  x + 3*  y] = A[ x,  y]<<r[ x,  y]; 
 -- χ step 
 for y = 0 to 4 
  for x = 0 to 4 
   A[ x,  y] = B[ x,  y] xor 

 (( not B[ x+1,  y]) and B[ x+2,  y]); 
 -- ι step 
 A[0,0] = A[0,0] xor RC; 
 return A; 
} 
 
In the above procedure the state A is represented as 
a 5 x 5 array of lanes and three additional auxiliary 
arrays of lanes: C[0…4], D[0…4] and B[0…4, 0…4] 
are needed to store intermediate values. Matrix r[ x,  
y]  used in the ρ step provides 25 constant rotation 
offsets explicitly given in the specification. 
Furthermore, all index arithmetic is taken modulo 5 
and rotating by a positive offset moves each bit in 
direction of the increasing index. 
Although the above pseudo code is relatively simple 
and makes use only of bit negations, exclusive or 
operands and rotations, visualisation of the resultant 
data flow in a diagram similar to that of Figures 1 or 
2 is practically impossible. The 3-dimensional array 
A[x][y][z] is divided in some transformations into so 
called planes (y = const), by another ones into slices 
(z = const) and by yet another ones into sheets (x = 
const) – thus the state processing cannot be 
decomposed into paths operating on constantly 
separated words like it was in AES and Salsa20. The 
only paths that can be traced must be defined down 
to the level of individual bits – and this makes 
Keccak flow extremely elaborate. 
 
 
 

3. Implementing the ciphers in hardware 
 

All the algorithms investigated in this work have 
strict round-based organization, i.e. they apply their 
processing by repeatedly executing (almost identical) 
block of operations (round) over some chunk  of data 
(state). In hardware implementations this fact can 
lead to many potential schemes that blend different 
aspects of iterative, pipelined and combinational 
architectures. Because the aim of this study was to 
verify scalability of the algorithms with respect to the 
number of rounds implemented in hardware, the 
following 5 organizations was selected for the test 
suite: 
- x1 – the basic iterative architecture with one round 

implemented in hardware and the state being 
passed though it repeatedly in nr clock cycles (i.e. 
each complete round is computed in one clock 
tick); 

- x2 – modification of the above with 
a combinational cascade of two rounds 
implemented in hardware with total computation 
done in nr/2 clock cycles (in each clock tick the 
state is propagated through two rounds); 

- x5 – as the previous case but with 5 rounds in 
hardware and nr/5 clock cycles required for 
complete computation; 

- PPL2 – the modified x2 organization with pipeline 
registers added after each round: two chunks of 
data are processed in parallel (twice the throughput) 
but the completion needs again nr clock cycles (in 
one clock tick the state is transformed by one 
round); 

- PPL5 – the pipelined x5 organization with 
5 chunks of data processed in parallel and 
consequently higher throughput. 

The x1 architecture is the one which takes the least 
amount of hardware resources and will be used as 
a point of reference in evaluation of the remaining 
cases. Their size (e.g. number of logic cells used in 
the FPGA array) should increase proportionally to 
the number of rounds implemented in hardware: 
 
   Sizexk ≈ Sizex1 · k 
   SizePPLk ≈ Sizex1 · k 

(1) 

 
Additional registers which are added in the pipelined 
organizations usually do not introduce any extra 
burden in the FPGA arrays and therefore the above 
estimations are identical for both xk and PPLk cases. 
Maximum frequency of operation – or the minimum 
clock period – depends on the other hand on the 
number of rounds the state must go through in one 
clock cycle: 
 
   Tclkxk ≈ Tclkx1 · k (2) 
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   TclkPPLk ≈ Tclkx1 
 
3.1. AES 
 

Uniformity of iterative processing in this cipher is 
questioned by the two factors: a) the initial round 
(i = 0) is significantly different form the following 
ones; b) the last round is slightly modified with one 
elementary transformation omitted. 
Due to the first factor, all the AES architectures have 
an extra introductory round implemented before the 
regular loop although it is a very simple one: it 
consists of just 128b xor logic but it still makes 
estimation of eq. (1) too restrictive – actual sizes of 
xk and PPLk architectures should be somewhat 
smaller than “·k”. What is also important, its 
execution needs a separate clock cycle (which is 
needed anyway for preparation of the first round key, 
K1) so the total computation time is 11·Tclk for x1 
and PPLk architectures and 6 or 3 (1 + 10/2 or 1 + 
10/5) Tclk for x2 and x5 cases. 
The second factor – different processing in the last 
round – requires special multiplexers for bypassing 
column mixing inside the round hardware, which 
again weakens the estimations (1) and (2). 
 
3.2. Salsa20 
 

Round repetitions are much more uniform in Salsa20 
with only exception: the actual fragment of the 
cipher which is repeated iteratively is a double round 
(executed 10 times) rather than a single round, 
because this can be of a column or a row type. In this 
situation, implementation of a strict iterative scheme 
“20 repetitions of a single round” would lead to 
a 512b wide multiplexer which would switch 
between column and row round inputs, impairing 
both size and speed of the hardware. 
In [13] we have shown that a better alternative is to 
consider a double round as an elementary unit of the 
iteration and such an organization – “10 repetitions 
of a double round” – was adopted in this work to be 
the basic “x1” architecture with nr = 10. Therefore, 
the “x2” organization computes the result in 5, while 
“x5” – in 2 clock cycles. This is on par with latencies 
of the AES variants but (nearly) doubles the sizes. 
 
3.3. Keccak 
 

Compared to the AES and Salsa20, Keccak has the 
most uniform iteration with the only difference 
between the rounds in using 20 different 16b 
constants needed for the ι step. These constants could 
be computed on-the-fly by LFSR registers 
independently for each round instance but it was 
simpler to tabularize them in distributed ROM 
modules which, being relatively small, do not add 

noticeably to the total size but (compared to the 
LFSR operation) conveniently simplify timing of 
data distribution. This solution was optimal in both 
xk and PPLk architectures. 
It should be noted that Keccak has the highest 
number of rounds in our comparison (20); with nr = 
10 AES and Salsa20 require half the iterations. 
 
4. Results of the implementation 
 

All 5 architectures of the 3 ciphers were described in 
the VHDL language at register transfer level (RTL) 
as closely as possible to the standard specification, 
using consistent coding style in all the cases. Then, 
the code was automatically synthesized and 
implemented in Xilinx ISE software ver. 14.7 with 
XST synthesis tool, and targeted for two FPGA 
devices – Spartan-3 (XC3S2000-5, package 
FGG676) and Spartan-6 (XC6SLX150-3, same 
package). This gave a total of 30 implementations 
under the tests. 
Devices XC3S2000 and XC6S150 were selected to 
be sufficiently large to accommodate the most sized 
x5 or PPL5 architectures. In terms of occupied LUT 
generators (which is equivalent to the number of 
logic cells) they took from 15 (Keccak) to 50 (AES) 
percent of the resources in Spartan-3 chip and from 
4 (Keccak) to 13 (Salsa20) percent in Spartan-6 
device. 
The smallest x1 design, on the other hand, needed 
just 4 ÷ 21% of Spartan-3 and merely 1.5 ÷ 3.7% of 
Spartan-6. This shows that size of the FPGA array 
did not limit the implementations and did not affect 
the results. 
 
4.1. Implementations of the basic iterative 
architecture 
 

Parameters after implementation of the basic iterative 
architectures in the two chips are given in Table 1. 
Design sizes are indicated by the number of used 
Look-Up Tables (LUT); number of registers (flip-
flop elements) depend in a very little degree on 
efficiency of physical implementation and will not be 
considered in this analysis. The second column 
additionally lists the number of logic elements found 
in the longest (lengthiest) path in the design which 
also determined minimum clock period (given in the 
third column). Performance parameters were 
calculated from the value of minimum Tclk which 
was estimated by the implementation tools in static 
timing analysis of the final, fully routed design. 
The figures allows for comparison of the three 
algorithms and efficiency of their implementations 
on the two different platforms. As it was already 
discussed in [10] and [11], the AES in the older 
Spartan-3 array needs very large amount of LUT 
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elements for implementation of 8b substitution boxes 
hence the size of this particular design is 
exceptionally large, but in Spartan-6 its size is 
reduced and remains comparable with Keccak. 
What is the most significant observation for Salsa20, 
on the other hand, is that its elementary operations 
are worst suited for aggregation in LUT elements: 
processing of one double round  needs 102 (Spartan-
3) and 50 (Spartan-6) levels of logic versus 3 ÷ 6 
levels in AES or Keccak. This also affects 
performance (by far the lowest operating frequency) 
and explains why the LUT usage in Salsa is much 
higher than in Keccak on both platforms. 
 
Table 1. Implementation parameters of the basic x1 
architecture for the three ciphers and two platforms 
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Spartan-3 

AES 8 755 6 13.1 76.3 144 888 
Salsa20 3 535 102 51.9 19.3 519 987 
Keccak 1 777 4 8.9 112 178 2 242 

Spartan-6 

AES 1 400 3 6.3 160 69 1 860 
Salsa20 3 367 50 22.7 44.1 227 2 256 
Keccak 1 339 3 4.9 204 98 4 090 

 
The Keccak algorithm turns out to be the fastest one 
within this comparison: limited number of logic 
levels led to the highest frequency of operation 
which, thanks also to large amount of data processed 
in the state, gave the best throughput result. 
Generally the newer, more powerful and faster 
Spartan-6 family shows its advantages over the 
predecessor reducing on average by half the 
minimum clock cycle: just by moving the same 
design to the new platform its throughput  is doubled. 
 
4.2. Scaling effects with increasing number of 
implemented rounds 
 

In order to evaluate scaling of the algorithms with 
increasing number of implemented rounds (two in x2 
and PPL2 designs or 5 in x5 and PPL5), parameters 
obtained for those architectures were compared to 
the estimates from equations (1) and (2). Table 2 
presents quotients of actual parameters and those 
estimates: 1.0 denotes ideal match, numbers lower 
than 1.0 – situation when the actual parameter is 

lower than its estimate, etc. Additionally, the table 
lists percentage of the longest delay which is 
generated by logic elements (with the remaining part 
attributed to routing resources) – this serves as an 
indication what the extra cost is induced by routing 
resources in each implementation. 
 
Table 2. Speed (Tclk) and size (number of LUT) of 
the derived architectures as fractions of the values 
estimated from the x1 case; plus logic part of the 
lengthiest path 
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 AES 

x2 0.80 0.61 30.5 0.78 0.84 21.8 

x5 0.67 0.36 27.9 0.76 0.71 18.6 

PPL2 1.03 0.66 26.6 0.91 0.82 25.5 

PPL5 1.04 0.47 26.9 0.89 0.70 25.0 

 Salsa20 

x2 0.96 0.79 51.5 1.21 0.80 25.6 

x5 1.05 0.66 44.1 1.22 0.68 24.4 

PPL2 0.96 0.79 54.6 1.27 0.82 27.5 

PPL5 1.09 0.66 47.6 1.22 0.72 31.8 

 Keccak 

x2 0.89 0.79 26.0 1.10 0.81 15.6 

x5 0.85 0.66 30.4 1.62 0.54 10.2 

PPL2 0.97 0.84 30.7 1.72 0.79 14.3 

PPL5 0.98 0.69 38.8 1.44 0.51 13.9 

 
With respect to these figures AES algorithm behaves 
in the most predictable way and offers results which 
are always close to or better than the expectations. In 
particular we can see that long combinational paths 
which are present in x2 and x5 organizations made 
possible efficient optimizations in partitioning of the 
logic into LUT generators, especially in Spartan-3 
arrays. Such an optimization significantly reduced 
their use: the record is 36% of the expected LUT 
elements actually used in the x5 case in Spartan-3 (in 
Spartan-6 optimization is not as spectacular: at most 
down to 71%). Savings in Tclk are unquestionable in 
x2 and x5 designs but are absent in the pipelined 
cases implemented in Spartan-3.  
The reductions in Tclk are not so evident for Salsa20 
and Keccak. While in Spartan-3 Salsa20 designs 
actually do not offer any noticeable improvement 
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over the estimations (ratios 0.96 ÷ 1.09), for Keccak 
the x2 and x5 design can reduce clock period to 85 ÷ 
89%. 
Probably the most striking observation from Table 2 
is that, in contrast to AES, in the newer (and 
potentially much faster) Spartan-6 family reductions 
in clock period are negative for both Salsa20 and 
Keccak. For Salsa20 the actual clock periods are 21 
÷ 27% longer than expected even though at the same 
time the optimization in LUT usage remains quite 
good (down to 68 ÷ 82% vs. estimations). This 
negative tendency becomes dramatic in Keccak: 
clock periods are by 62% longer than expected in the 
largest x5 organization and, notably, pipelining 
added in the PPL5 case is only a partial solution (still 
an increase by 44%, not seen in any implementation 
of the two other ciphers). 
The problems of Keccak in Spartan-6 should be 
attributed to routing congestion which is confirmed 
by comparing presented logic vs. routing ratio in the 
longest path. With the values of 10.2 ÷ 15.9%, 
Keccak designs in Spartan-6 have by far the lowest 
logic parts amongst all the tested cases. Such small 
values – and, consequently, high values for routing – 
indicate that configurable connection schemas used 
in the new Spartan-6 family do not fit particular 
requirements of propagation rules of Keccak 
individual bits which were noticed at the end of 
chapter 2.3. Neither AES nor Salsa20 presented such 
problems. 
 
4.3. Evaluation of the two FPGA platforms 
 

last point of analysis will be devoted to comparison 
of size and speed metrics between the two hardware 
platforms for all the 15 designs. Table 3 presents 
ratios of numbers of LUT and values of Tclk on the 
two platforms, i.e. the parameter for Spartan-3 was 
divided by the value for Spartan-6 and the quotient is 
included in the table. 
What becomes evident when looking at the size 
comparison (the upper half of the table) is that AES 
is the only cipher that benefits remarkably from 
moving to the newer Spartan-6 platform: the size is 
reduced from 6.3 to 3.2 times. In Keccak the 
reductions are still noticeable although only by 
factors 1.3 ÷ 1.8. In Salsa20, on the other hand, 
number of LUT elements remains virtually 
unchanged with PP5 case being the only one when 
this number actually increases – and this despite the 
fact that 6-input LUT generators in Spartan-6 are 
much more powerful than their 4-input counterparts 
in Spartan-3. This again confirms that this potential 
of the new platform remains useless in 
implementation of atomic operations defined for this 
cipher. 

Table 3. Ratios of size (number of LUT) and speed 
(Tclk) in Spartan-3 vs. Spartan-6 implementations 

  

x1 x2 x5 P
P

L2
 

P
P

L5
 

LUT  ( S3 : S6 ) 

AES  6.25 4.58 3.17 5.07 4.23 

Salsa20  1.05 1.03 1.02 1.00 0.97 

Keccak  1.33 1.29 1.64 1.42 1.79 

Tclk  ( S3 : S6 ) 

AES  2.09 2.14 1.83 2.36 2.43 

Salsa20  2.28 1.82 1.97 1.73 2.05 

Keccak  1.82 1.48 0.96 1.03 1.25 
 
Speed comparison adds another evidence of  the 
same problems that plagued Keccak implemented in 
Spartan-6 and were visible in the previous point. 
While both AES and Salsa20 organizations reduce 
their clock periods by 2.43 ÷ 1.73 on the new 
platform, Keccak demonstrate significant problems 
with scaling when its size increases. For the x1 and 
x2 designs the Tclk reduction is by 1.82 and 1.48, but 
in x5 the ratio is smaller than 1 i.e. clock period in 
Spartan-3 is actually shorter that in Spartan-6. It is 
a surprising and unusual situation that this design is 
slower in the new FPGA device than it was in its 
predecessor. 
 
5. Conclusions 
 

In this work we have analyzed efficiency of 
hardware implementations of three well-known 
cryptographic algorithms on two FPGA platforms, 
illustrating potential strengths and weaknesses when 
basic iterative architecture of any cipher is unrolled, 
with and without pipelining. 
The results show that AES, the oldest of the ciphers, 
is the one which can be implemented in both 
Spartan-3 and Spartan-6 devices with the most 
predictable results. Its realization particularly in 
Spartan-6 is advantageous because in the older 
family 8b substitution boxes generate very large 
amount of resources but still even in such outsized 
designs in Spartan-3 unrolling and pipelining can be 
applied with positive and predictable  effects. 
Slasa20 turned out to be the algorithm with 
elementary operations which are the most difficult 
for implementation with LUT generators available in 
the FPGA array: data path of one double round in 
this cipher needed 102 (Spartan-3) or 50 (Spartan-6) 
levels of logic while in the other algorithms – at most 
6. This led to large designs (large number of LUT 
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generators which were utilized to a little degree) and 
slow timing. 
The problem with Keccak, on the other hand, is with 
routing congestion which start to appear in Spartan-6 
devices in bigger (more unrolled) architectures but 
does not affect Spartan-3 array. As an extreme 
example, although AES and Salsa implementations 
are on average twice faster in Spartan-6, Keccak’s x5 
design runs 4% slower and the pipelined variant – 
not as much faster. 
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