Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 6, Number 2, 2015

Sugier Jarostaw
Wroctaw University of Technology, Wroctaw, Poland

Efficiency of FPGA architectures in implementationsof AES, Salsa20
and Keccak cryptographic algorithms

Keywords

block cipher, hash function, hardware implementatioop unrolling, pipelining, FPGA

Abstract

The aim of this paper is to test efficiency of am&tic implementation of selected cryptographic athms in

two families of popular-grade FPGA devices fromint Spartan-3 and Spartan-6. The set of algorithms
include the Advanced Encryption Standard (AES) wseddwide as a symmetric cipher along with twohhas
algorithms: Salsa20 (developed with ECRYPT Stredaphé€r Project) and Keccak permutation function écor
of the new SHA-3 standard). The ciphers were eggie 5 architectures: the basic iterative one {pstance

of a round in hardware) and its four derivativesated by loop unrolling and pipelining. With eadhtlze
architectures implemented in both Spartan devisissgave the total of 30 test cases, which, updonaatic
implementation, created a comprehensive and censidbase for comparison of the ciphers, applied
architectures and FPGA devices used for implementat

1. Introduction Instead, the goal of this work is to explore etiaén

roperties of the ciphers when they are implemented
Safe and reliable operation of contemporary comple>{) P P y P

hnical ft é} an FPGA device in the basic iterative
technical systems very oiten rests on secure an@qanization — one cipher round instantiated in

dependable data acquisition, transmission or S80rag parqware — along with other variants created by loo
hence cryptography methods have recently becom nrolling, optionally with pipelining.

an indispensable element in design and analysis Qf;ch of the three algorithms was realized in five
system safety and stability. Intensive research, nhitecture variants and all of them were
activity in this area led to development of a numbe j,5jemented on two hardware platforms, so in total
of methods which are used in symmetric O3y tegt cases were investigated. This created a
asymmetric cryptography, digital fingerprinting or .,mnrehensive and consistent base for comparison of
message authentication. If very high processingne ciphers, architectures and FPGA devices.

speed is required these algorithms need 10 Depg eyt s organized as follows. In the next chept
implemented in dedicated, often configurable oheration of the three algorithms is briefly disecs
hardware. in the light of their further implementation in

The aim of this paper is to test efficiency of parqyare” Then, in chapter 3 we will present the
automatic implementation of selected cryptographicqgiacted set of five organizations and comment on

algorithms in two families of popular-grade FPGA y,qir specific realization for each of the algamith

devices from Xilinx: more mature and establishedFina”y in chapter 4 parameters of the 30 tesesas
Spartan-3 ([15]) and newer, more advanced Spartanspyained after implementation will be presented
6 ([16]). The set of cryptographic algorithms irdu \yhich will provide a base for discussion of size,
the Advanced Encryption Standard (AES) — aparformance and efficiency characteristics of the

symmetric - block cipher along with two hash gi44rithms in different hardware configurations.
algorithms: Salsa20 and Keccf#00].

In the literature there are many proposals foceffit
hardware implementations of these particular
algorithms ([1], [4]-[8], [10]-[14], [17]). This p@er In the following discussion we will use th&™ and
does not aim at supplementing these kind of efforts‘<<’ symbols for elementary operations executed

2. Presentation of the algorithms

117

Sugier Jarostaw
Efficiency of FPGA architectures in implementatioh\ES, Salsa20 and Keccak cryptographic algorithm

over bit vectors: bitwise exclusive or (xor) andt le Additionally to this, the key&; need to be generated

rotation by a given number of bits. Furthermane, from the main ke by another computations which,

will denote number of rounds repeated iteratively i in turn, operate on 32b wordsg, i = 0..43. Initially,

the complete loop of the cipher. the first four words are filled with bits from theser
key:

2.1. Advanced Encryption Standard (AES)

The algorithm, which is formally defined in [9],
belongs to a class of symmetric block ciphersiii.e.
uses the sameecret keyto both encryption and
decryption of a fixed-size block of data — so adlle
state In this work we investigate the most widely
used AES-128 version where both the data and the
key are 128b long. From functional point of view
organization of the cipher is a substitution-
permutation network which processes the state in Wairs = Wair2 [Waig

a series of 10 almost identical rounds. Each round Ki = {Wai, Wais1, Wais2, Waiv3 }

uses its own key which is generated from the user- _

supplied external key by a separkty expansian Here _the_SBoxtransformathn uses exactly the same
Data encoding and key expansion share very similapubstitution boxes as the cipher path andRben is

set of elementary transformations and constitute tw @ vector of ten 32b constants statically definethen
128b-wide processing paths which needs to bes'gandard. Data flow is visualized in the left paft
executed in parallel one along another. Figure 1
The state is interpreted as 4x4 array of bytesthad

round apply four elementary transformations upon it

in the following order (see the right partigure 1):

- substitutionSBoX) where each byte of the state is n —
replaced by another one according to a specific o
invertible static transcoding function;

- row shifting SR) where each thé&-th row k =
0...3) of the state array is rotated bbgolumns to the

{Wo, Wy, Wy, W} = K

and then, for = 1..10, every group of four words that
creates round kelg; is computed as follows:

Wy =SBoX w41 << 8) Rcon[i] [Wyq

Wyir1 = Wy [Wyis
Wyir2 = Waisy L Waip

Key expansion Cipher

Wai-4
Wai-3
Wai-2
Wai-1

|
% |
(axsBox8

16xSBox8b

left in encryption or to the right in decryption; CP Wi
- column mixing MC() operating on whole state o Wais _
columns rather than on individual bytes and g ﬂf o
calculating its result through an involved serids o gD Ha V.
shift and xor operations (which models polynomial Wiz,
multiplication modulax* + 1 over GF(2)); IV

- key mixing where the round key is simply xor’'ed — e

bit-by-bit over the state vector. Figure 1.Data flow of one AES round: key

The complete encryption path consist of oneexpansion and cipher paths
introductory round which is followed by 10 regular

ones (of which the last one is slightly modified®t: Compared to other algorithms discussed in this pape
P — a 128b plaintext (the input), the AES has the largest diversity of internal
Bi — a state block that enters thii regular round? processing with additional hardware required foy ke
(i = 0 denotes the introductory round), expansion introducing extra complications. Although
K — external user key, the state size is 128b, together with key expansion

Ki — the key generated in the expansion for raund words the entire data path is 256b wide.
C — encoded ciphertext (the output).

The whole encoding can be expressed in the) 2 531sa20 hash function
following way:
At its core the Salsa20 ([2]) is essentially a 512b

B,=POK hash function, i.e. Salsa2f() is a 512b hash value
B.. =MC(SR SBoxB/)))OK;, i=1...9 computed for the input of the same size. Internally
C = SR SBox(Bio)) 0 Kio ’ the computations are executed over the 512b gtate

which is divided into 16 x 32b wordg:= (Qo, qy, ---
Ohs)- The state is transformed in 20 rounds with
different permutations of the state words passed as

11¢€

Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 6, Number 2, 2015

the input to even- and odd-numbered rounds but (qo, 04, Q¢', 012) = quarterround do, s, Js, C12)

otherwise the in-round processing is identical. (g5, 9o’y Oi3, Q1) = quarterround gs, go, G13, 91)
In Salsa20 there is no key expansion path; instead, (0o, Oi4, @2, 06’) =
the external key is embedded into the input quarterround Qso, Q14, 2, Js)
producing directly half of the 16 state words ameht (Os, O3’ 07, Oy’) =
the 512b vector is processed in its entirety. quarterround qs, ds, 07, Qi1)

Moreover, in the entire algorithm only the followgin
three basic transformations are used, all operatmg A column round followed by a row round make up
32b words: so calleddouble round
- bitwise exclusive or (xor) of the two words;
- arithmetic sum of the two words taken mod, 2 doubleroun¢lq) =rowround columnroundq))
denoted as +;
- rotation of a word to the left by some given and the entire hash is computed by applying ten
(constant) number of positions. times the double round to the inputand then by
The basic organizational unit of the cipher is adding the result:
a quarterroundfunction which transforms a group of
four state wordsguarterrorundwo, Wi, W, Ws) = Salsa20x) =doubleround®(x) +x
(Wo', Wy', Wy', Wg') in the following way:
Compared to the AES Salsa20 has much simpler

wy' = wy O ((Wo +Ws) << 7) elementary operations: all of them operate bit-wise
W' = Wo O ((Wy' + W) << 9) on 32b words only and, in particular, they do not
we' = ws O (W' + wy) << 13) involve _8b substitution_boxes. Also uniformity diet

W' = Wo O (W5’ + wy) << 18) rounds is very good with no need to expand the key.

Nevertheless, with 512b wide data path and 20
The flow of data which results from the above founds the entire cipher is significantly bigger in

equations is graphically visualizedHigure 2 Size.

Quarterrounc___ 3. Keccak{[400] permutation function
Wo= Pt

Es g The Keccak algorithm — or, more precisely, the
wlg— —_— =Wy’ family of 7 different in size Keccak algorithms rea

: <<9 built around Keccakfb] permutation functionsfor
w2-§- @ — parametedl = 0, 1, ... 6 each function operates on

' a stateA consisting ofb = 25 x 2 bits b= 25, 50,

. @ W 100, 200, 400 800, or 1600) where a single word of
I . o w=2 bits length is callech lane Every function
- sum mod?® @ - ExclusiveOr

[==1]- left rotation computes its result processing the state in assefie
n =12 + 2rounds (= 12, 14, 16, 18, 20, 22, or
Figure 2. Transformations of the state words inthe 24). In this work we include Keccdf400] in the
Salsa20 quarterround block comparison — with 20 rounds, 16b lanes and 400b
state.
Four quarterrounds operating in parallel transformThe reference specification in [3] describes one
the entire statg and constitute a single round of the round of Keccakip] as a sequence of 5
cipher. Depending on its input, a round can beaine transformations:
the two kinds: aow roundor acolumn roundA row
round function is defined aswround q) =g’ such Round =/oxormopod

that Computing the permutation is equivalent just to
applying the round function, times:
@', 4, &', @) = quarterrounddp, gz, G2, Ck)

@5, G¢', @7, a4) = quarterroundds, Qs, O7, Cs) Keccak- f[b](A)
(@05 Qi1 G8's Go') = quarterrounddio, Gus, Gs, Go) {
(s, Oh2s Oi3,s Qud) = for i=0to n—-1
quarterroundqs, di2, O3, G1a) A=Round[b]J(A,RC[i])
Return A;

whereas a column round function is defined as!
columnround g) =q’ such that

Sugier Jarostaw
Efficiency of FPGA architectures in implementatioh\ES, Salsa20 and Keccak cryptographic algorithm

where RC[i] are w-bit constants that are 3. Implementing the ciphers in hardware
generated by specific binary linear feedback shift
register (LSFR) defined in the specification.
Operation of a single round is specified in a sampl
pseudo-code as follows:

All the algorithms investigated in this work have
strict round-based organization, i.e. they apphirth

processing by repeatedly executing (almost ideltica
block of operationsréund over some chunk of data

Round]b](A, RC) (statg. In hardware _implementations this fac_t can
lead to many potential schemes that blend different
-- Ostep aspects of iterative, pipelined and combinational
for x=0to4 architectures. Because the aim of this study was to
C[X1=A[x0] xor Al x1] xor A[x,2] verify scalability of the algorithms with respeotthe
xor A[x3] xor Al x4]; number of rounds implemented in hardware, the
for x=0to4 following 5 organizations was selected for the test
D[x]=C[x1] xor (C[x+1]<<1); suite:
for y=0to4 - X1 — the basic iterative architecture with one round
for x=0to4 implemented in hardware and the state being
Al % YI=A[x vyl xor D[X]; passed though it repeatedlynpclock cycles (i.e.
-- pandr steps each complete round is computed in one clock
for y=0to4 tick);
for x=0to4 - X2— modification of the above with
B[y.2* x+3* y=A[X yI<<r[X ¥ a combinational cascade of two rounds
-- xstep implemented in hardware with total computation
for y=0to4 done inn/2 clock cycles (in each clock tick the
for x=0to4 state is propagated through two rounds);
Al x yl=B[Xx yl xor - X5— as the previous case but with 5 rounds in
(C not B[x+1, y)) and B[x+2, y]); hardware andn/5 clock cycles required for
- - 1Step complete computation;
A[0,0] = A[0,0] xor RC; - PPL2 — the modified x2 organization with pipeline

return A;

}

registers added after each round: two chunks of
data are processed in parallel (twice the throughpu
but the completion needs againclock cycles (in
one clock tick the state is transformed by one
round);

In the above procedure the stétés represented as
a5 x 5 array of lanes and three additional auxilia

arrays of Ianei:[O...{l], D[O"".l] andgo...4, O".'4] - PPL5— the pipelined x5 organization with
are needed to store intermediate values. Matrix 5chunks of data processed in parallel and
y] used in theo step provides 25 constant rotation consequently higher throughput.

offsets explicitly given in the specification. The x1 architecture is the one which takes thet leas
Furthermore, all index arithmetic is taken modulo 53mount of hardware resources and will be used as
and rotating by a positive offset moves each bit iny hoint of reference in evaluation of the remaining
direction of the increasing index. _ ~ cases. Their size (e.g. number of logic cells lsed
Although the above pseudo code is relatively simplene FPGA array) should increase proportionally to

and makes use only of bit negations, exclusive Ofhe number of rounds implemented in hardware:
operands and rotations, visualisation of the rastilt

data flow in a diagram similar to that Bigures lor Size, =Size, - k
2 is practically impossible. The 3-dimensional array Sizepy = Size; - K
A[X][Vl[Z] is divided in some transformations into so
calledplanes(y = const), by another ones irdtices

(1)

_ : i Additional registers which are added in the pipsdin
(z = const) and by yet another ones isteets(x = organizations usually do not introduce any extra

gonst) N tg”? tthe tsr:ate proigssmg cann(?[t ttl)%urden in the FPGA arrays and therefore the above
ecomposed Into pailhs operaling on - constantiy, o4y ations are identical for botk and PPk cases.

separated words like it was in AES and Salsa20. Ths,vimum frequency of operation — or the minimum

only paths that can be traced must be defined dowr&lock period — depends on the other hand on the
to the level of individual bits — and this makes

K KAl v elab number of rounds the state must go through in one
eccak flow extremely elaborate. clock cycle:

Tclky =Tclky - k (2

12C

Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 6, Number 2, 2015

Tclkep = Telkg noticeably to the total size but (compared to the
LFSR operation) conveniently simplify timing of
3.1. AES data distribution. This solution was optimal in ot

. .)) . . . Xk and PPk architectures.
Uniformity of iterative processing in this Ciph& i |t should be noted that Keccak has the highest
questioned by the two factors: a) the initial round h,mpber of rounds in our comparison (20); with=

(i=0) is significantly different form the following 109 AES and Salsa20 require half the iterations.
ones; b) the last round is slightly modified witheo

elementary transformation omitted.

Due to the first factor, all the AES architectuhese
an extra introductory round implemented before theAll 5 architectures of the 3 ciphers were descriimed
regular loop although it is avery simple one: it the VHDL language at register transfer level (RTL)
consists of just 128b xor logic but it still makes as closely as possible to the standard specifitatio
estimation of eq. (1) too restrictive — actual sipé using consistent coding style in all the cases.nThe
xk and PPk architectures should be somewhatthe code was automatically synthesized and
smaller than ‘K". What is also important, its implemented in Xilinx ISE software ver. 14.7 with
execution needs a separate clock cycle (which iXST synthesis tool, and targeted for two FPGA
needed anyway for preparation of the first roungl ke devices — Spartan-3 (XC3S2000-5, package
K1) so the total computation time is 13;Tfor x1 FGG676) and Spartan-6 (XC6SLX150-3, same
and PPk architectures and 6 or 3 (1 + 10/2 or 1 + package). This gave a total of 30 implementations
10/5) Tek for x2 and x5 cases. under the tests.

The second factor — different processing in thé lasDevices XC3S2000 and XC6S150 were selected to
round — requires special multiplexers for bypassingbe sufficiently large to accommodate the most sized
column mixing inside the round hardware, which x5 or PPL5 architectures. In terms of occupied LUT

4. Results of the implementation

again weakens the estimations (1) and (2). generators (which is equivalent to the number of
logic cells) they took from 15 (Keccak) to 50 (AES)
3.2. Salsa20 percent of the resources in Spartan-3 chip and from

. _ _ 4 (Keccak) to 13 (Salsa20) percent in Spartan-6
Round repetitions are much more uniform in Salsa2Qyeyjice.
with only exception: the actual fragment of the The smallest x1 design, on the other hand, needed
cipher which is repeated iteratively is a doublen® st 4 + 219 of Spartan-3 and merely 1.5 + 3.7% of
(executed 10 times) rather than asingle roundgpartan-6. This shows that size of the FPGA array

because this can be of a column or a row typ&ifn t - §ig not Ilimit the implementations and did not affec
situation, implementation of a strict iterative sofeé ihe results.

“20 repetitions of a single round” would lead to
ab12b wide multiplexer which would switch
between column and row round inputs, impairing
both size and speed of the hardware.
In [13] we have shown that a better alternativéois Parameters after implementation of the basic iterat
consider a double round as an elementary uniteof tharchitectures in the two chips are givenTiable 1
iteration and such an organization — “10 repet&tion Design sizes are indicated by the number of used
of a double round” — was adopted in this work to beLook-Up Tables (LUT); number of registers (flip-
the basic “x1” architecture with, = 10. Therefore, flop elements) depend in a very little degree on
the “x2” organization computes the result in 5, ihi efficiency of physical implementation and will rwog
“x5” —in 2 clock cycles. This is on par with laes considered in this analysis. The second column
of the AES variants but (nearly) doubles the sizes. additionally lists the number of logic elementsridu

in the longest (lengthiest) path in the design Wwhic
3.3. Keccak also determined minimum clock period (given in the
third column). Performance parameters were
Compared to the AES and Salsa20, Keccak has thgalculated from the value of minimumyTwhich

most uniform iteration with the only difference : d by the imol . s | ,
between the rounds in using 20 different 16bVaS estlmatg yt € Imp ementation too.s In static
timing analysis of the final, fully routed design.

constants needed for thetep. These constants could The figures allows for comparison of the three

be computed on-the-fly by LFSR registers , o S .
independently for each round instance but it Wasalgonthms and efficiency of their implementations

simpler to tabularize them in distributed ROM on the two different platforms. As it was already

modules which, being relatively small, do not adddiscussed n [10] and [11], the AES in the older
' 9 y ’ Spartan-3 array needs very large amount of LUT

4.1. Implementations of the basic iterative
architecture

121

Sugier Jarostaw
Efficiency of FPGA architectures in implementatioh\ES, Salsa20 and Keccak cryptographic algorithm

elements for implementation of 8b substitution lBoxe lower than its estimate, etc. Additionally, the leab
hence the size of this particular design islists percentage of the longest delay which is
exceptionally large, but in Spartan-6 its size isgenerated by logic elements (with the remaining par
reduced and remains comparable with Keccak. attributed to routing resources) — this servesras a
What is the most significant observation for Salsa2 indication what the extra cost is induced by ragtin
on the other hand, is that its elementary operationresources in each implementation.

are worst suited for aggregation in LUT elements:

processing of one double round needs 102 (SpartarFable 2 Speed (Ji) and size (humber of LUT) of

3) and 50 (Spartan-6) levels of logic versus 3 + 6the derived architectures as fractions of the \slue
levels in AES or Keccak. This also affects estimated from the x1 case; plus logic part of the
performance (by far the lowest operating frequency)lengthiest path

and explains why the LUT usage in Salsa is much

higher than in Keccak on both platforms. Spartan-3 Spartan-6
. e . e
. . n | © n | ©
Table 1 Implementation parameters of the basic x1 B w oag| w u oy
architecture for the three ciphers and two platrm w & n =] W v B =
0 > (&) 0 > (SRS
~ | |29 2| £ |29
& 3) c L 3) c L
) B — - — — - —
el I 7| 5 AES
° |9 S| N2
5 |3 ~ | T 25— x2| 0.80] 0.61] 30.5| 0.78| 0.84| 21.8
2 5 7
Elxe || 8|28 x5| 0.67] 0.36] 27.9] 0.76] 0.71] 186
2 S E| £ S|
Z |22 £ | £ | O|lF& PPL2| 1.03] 0.66] 26.6] 0.91| 0.82| 25.5
Spartan-3 PPL5| 1.04] 0.47| 26.9) 0.89| 0.70] 25.0
AES| 8755 6| 13.1] 76.3| 144| 888 Salsa20
Salsa2() 3535 102| 51.9| 19.3| 519| 987 x2| 0.96| 0.79, 515/ 1.21| 0.80] 25.6
Keccakl 1777 4| 8.9| 112| 178| 2242 x5| 1.05| 0.66] 44.1} 1.22| 0.68| 24.4
Spartan-6 PPL2| 0.96] 0.79] 54.6] 1.27| 0.82| 27.5
AES| 1400, 3| 6.3| 160| 69| 1860 PPL5| 1.09| 0.66| 47.6] 1.22| 0.72| 31.8
Salsa2() 3367| 50| 22.7| 44.1| 227| 2 256 Keccak
Keccakl 1339 3| 4.9] 204] 98] 4090 x2| 0.89] 0.79] 26.0] 1.10] 0.81] 156
The Keccak algorithm turns out to be the fastest on x5| 0.85 0.66) 30.4) 1.62] 0.54] 10.2
within this comparison: limited number of logic | PPL2] 0.97| 0.84] 30.7] 1.72| 0.79] 14.3
levels led to the highest frequency of operation ppLs| 098 0.69 38.8] 1.44| 051 13.9

which, thanks also to large amount of data prockss

ggggrsaﬁ?te’tr?:\/?]g\;veefesr:lg]r?wg&gfﬁsﬂa d fasterWith respect to these figures AES algorithm behaves
y : P in the most predictable way and offers results Wwhic

Spartan-6 family shows its advantages over theare always close to or better than the expectatlans

pr.ec.lecessor reduc'”g on average by half theparticular we can see that long combinational paths
minimum clock cycle: just by moving the same

:) ; which are present in x2 and x5 organizations made
design to the new platform its throughput is dedbl possible efficient optimizations in partitioning tife

. o . logic into LUT generators, especially in Spartan-3
_4'2' Scaling effects with increasing number of arrays. Such an optimization significantly reduced
implemented rounds their use: the record is 36% of the expected LUT

In order to evaluate scaling of the algorithms with €lements actually used in the x5 case in Sparam-3
increasing number of implemented rounds (two in x2SPartan-6 optimization is not as spectacular: a&tmo
and PPL2 designs or 5 in x5 and PPL5), parameterdoWn t0 71%). Savings inqf are unquestionable in
obtained for those architectures were compared t¢2 and x5 designs but are absent in the pipelined
the estimates from equations (1) and (Pable 2 cases implemented in Spartan-3.

presents quotients of actual parameters and thosEn€ reductions in Ji are not so evident for Salsa20
estimates: 1.0 denotes ideal match, numbers loweRnd Keccak. While in Spartan-3 Salsa20 designs
than 1.0 — situation when the actual parameter i@ctually do not offer any noticeable improvement

122

Journal of Polish Safety and Reliability Associatio
Summer Safety and Reliability Seminafslume 6, Number 2, 2015

over the estimations (ratios 0.96 + 1.09), for kKdcc Table 3 Ratios of size (number of LUT) and speed
the x2 and x5 design can reduce clock period te 85 (Tcx) in Spartan-3 vs. Spartan-6 implementations
89%.

Probably the most striking observation frdmable 2 N 9
is that, in contrast to AES, in the newer (and x1 X2 x5 & &
potentially much faster) Spartan-6 family reducsion

in clock period are negative for both Salsa20 and LUT (S3:36)

Keccak. For Salsa20 the actual clock periods are 21 |AES 6.25 4.58| 3.17| 5.07| 4.23

+ 27% longer than expected even though at the same Salsa20 105 1.03 1.020 1.00 097
time the optimization in LUT usage remains quite : - - : :
good (down to 68 + 82% vs. estimations). This |Keccak 133 1.29 1.64 142 1.79
negative tendency becomes dramatic in Keccak: Tox (S3:56)
clock periods are by 62% longer than expecteden th

largest x5 organization and, notably, pipelining AES 209 2.14) 183 236 2.43
added in the PPL5 case is only a partial solutsifi (Salsa20 2.28 1.82] 197 1.73] 2.05
an increase by 44%, not seen in any implementation [accak 182 148 096 103 125
of the two other ciphers).

The problems of Keccak in Spartan-6 should beS q . d4d i id £ oth
attributed to routing congestion which is confirmed peed comparison adds another evidence o €

by comparing presented logic vs. routing ratiohia t same problems that plagued Keccak implemented in

longest path. With the values of 10.2 + 15.9%, Spartan-6 and were visible in the previous point.

: - _ hile both AES and Salsa20 organizations reduce
Keccak designs in Spartan-6 have by far the Iowesmeir clock periods by 2.43 + 1.73 on the new

logic parts amongst all the tested cases. Suchl sma latf K K d trate sianificant bl
values — and, consequently, high values for routing piatiorm, Keccak demonstrale significant problems

indicate that configurable connection schemas usef/ith scaling when its size increases. For the xd an

in the new Spartan-6 family do not fit particular ?(2 designs the ck reduction is by 1.82 and 1.48, but

requirements of propagation rules of Keccakg x5tthe3r§1t|o 'f s;lnallcra]r t‘[]anthl :?. cSIocktperéndlt
individual bits which were noticed at the end of Paran-s 1S actually shorter that in spartan-os

chapter 2.3. Neither AES nor Salsa20 presented Sucﬁsurprl_smg and unusual situation that '_[h|s de:_Bgrj
problems. slower in the new FPGA device than it was in its

predecessor.

4.3. Evaluation of the two FPGA platforms

last point of analysis will be devoted to companiso
of size and speed metrics between the two hardwar
platforms for all the 15 design3.able 3 presents
ratios of numbers of LUT and values ofiTon the

two platforms, i.e. the parameter for Spartan-3 wa - ' . : .
divided by the value for Spartan-6 and the quotient asic iterative architecture of any cipher is uledl
with and without pipelining.

included in the table. ,
What becomes evident when looking at the sizeThe results show that AES, the oldest of the cipher

. - the one which can be implemented in both
comparison (the upper half of the table) is thatSAE IS . :
is the only cipher that benefits remarkably from Spartan-3 and Spartan-6 devices with the most

moving to the newer Spartan-6 platform: the size iSpredlctable results. Its realization particularly i

reduced from 6.3 to 3.2 times. In Keccak theSpartan-6 is advantageous because in the older
reductions are still noticeable although only byfamIIy 80 substitution bOX‘?S generate very Iqrge
factors 1.3 + 1.8. In Salsa20, on the other handamount of resources but still even in such outsized

number of LUT elements remains virtually designs in Spartan-3 unrolling and pipelining can b

unchanged with PP5 case being the only one whe pplied with positive and predictable effects.

this number actually increases — and this despée t lasa20 turned out to 'be the algorlthm' \.N'th
fact that 6-input LUT generators in Spartan-6 areeIementary operations which are the most difficult

L for implementation with LUT generators available in
muchmore powerful than their 4-input counterparts) .
in Spartan-3. This again confirms that this potnti :E.e F.PEA arraé/. dd?_thZ pi;th cf[f Oge dOlSJgIeSround '2
of the new platfiorm remains useless in > CIPherneeae (Spartan-3) or 50 (Spartan-

. . . : . . levels of logic while in the other algorithms —apst
erppdg:nentaﬂon of atomic operations defined fos thi 6. This led to large designs (large number of LUT

5. Conclusions

hu this work we have analyzed efficiency of
ardware implementations of three well-known
cryptographic algorithms on two FPGA platforms,
illustrating potential strengths and weaknessesnwhe

12¢

Sugier Jarostaw
Efficiency of FPGA architectures in implementatioh\ES, Salsa20 and Keccak cryptographic algorithm

generators which were utilized to a little degraedl

slow timing.

The problem with Keccak, on the other hand, is with
routing congestion which start to appear in Spa@tan
devices in bigger (more unrolled) architectures bjtO]
does not affect Spartan-3 array. As an extreme
example, although AES and Salsa implementations
are on average twice faster in Spartan-6, Kecodk’s
design runs 4% slower and the pipelined variant[1]
not as much faster.

References

[1] ATHENa Database of FPGA Resulévailable at 12]
http://cryptography.gmu.edu/athenadb/fpga_has[n,
access date: March 2015.

[2] Bernstein, D. J. (2008). The Salsa20 family of

stream ciphers.New Stream Cipher Designs

Springer, 84-97.

Bertoni, G., Daemen, J., Peeters, M. & Van

Assche, G. (2011).The Keccak reference 3]

http://keccak.noekeon.org/, access date: Mallclh

2015.

Gaj, K., Homsirikamol, E., Rogawski, M.,

Shahid, R. & Sharif, M. U. (2012). 14]

Comprehensive evaluation of high-speed ar[wd

medium-speed implementations of five SHA-3

finalists using Xilinx and Altera FPGAsThe

Third SHA-3 Candidate Conferend&/ashington,

DC, USA.

Gaj, K., Kaps J. P., Amirineni, V., Rogawski, M.,

Homsirikamol, E. & Brewster, B.Y. (2010).[15]

ATHENa - Automated Tool for Hardware

EvaluatioN: Toward Fair and Comprehensive

Benchmarking of Cryptographic Hardware Usin

FPGAs. 20th International Conference on Fiel

Programmable Logic and Application#ilano,

Italy. 17]

Gaj, K., Southern, G., & Bachimanchi, R. (2007;

Comparison of hardware performance of selected

Phase Il eSTREAM candidatd2ioc. State of the

Art of Stream Ciphers WorkshogSTREAM,

ECRYPT Stream Cipher Project, Report, Vol. 26,

p. 2007.

Junkg, B. & Apfelbeck, J. (2011). Area-efficient

FPGA implementations of the SHA-3 finalists.

2011 International Conference on Reconfigurable

Computing and FPGAs (ReConFidEEE, 235-

241.

Liberatori, M., Otero, F., Bonadero, J.C. &

Castineira, J. (2007). AES-128 Cipher. High

Speed, Low Cost FPGA ImplementatidProc.

Third Southern Conf. on Programmable Logic

Mar del Plata, Argentina, IEEE Comp. Soc. Press.

[9] National Institute of Standards and Technology
(2001). Specification for the ADVANCED

[3]

[4]

[5]

6]

[6]

[7]

[8]

124

ENCRYPTION STANDARD (AES). Federal
Information Processing Standards Publication
197. http://csrc.nist.gov/publications/PubsFIPS
.html (accessed March 2015).

Sugier, J. (2012). Implementation of symmetric
block ciphers in popular-grade FPGA devices.
Journal of Polish Safety and Reliability
Associatior3, 2, 179-187.

Sugier, J. (2012). Implementing AES and Serpent
ciphers in new generation of low-cost FPGA
devices. Advances in Intelligent and Soft
Computing: Complex Systems and Dependability
Springer, 170, 273-288.

Sugier, J. (2013). Implementing Salsa20 vs. AES
and Serpent in Popular-Grade FPGA Devices.
Advances in Intelligent and Soft computing: New
Results in Dependability and Complex Systems
Proc. & Int. Conf. Dependability and Complex
Systems DepCoS-RELCOMEX, Springer, 224,
431-438.

Sugier, J. (2013). Low-cost hardware
implementations of Salsa20 stream cipher in
programmable devicedournal of Polish Safety
and Reliability Associatiod, 1, 121-128.

Sugier, J. (2014). Low cost FPGA devices in high
speed implementations of Keccak-f hash
algorithm. Advances in Intelligent and Soft
computing: New Results in Dependability and
Complex Systems Proc. ¢ Int. Conf.
Dependability and Complex Systems DepCoS-
RELCOMEX, Springer, 286, 433-442.

Xilinx, Inc. (2009).Spartan-3 Family Data Sheet
www.Xilinx.com (ds099.pdf); retrieved March
2015.

Xilinx, Inc. (2011). Spartan-6 Family Overview
www.Xilinx.com (ds160.pdf); retrieved March
2015.

Yan, J., & Heys, H. M. (2007). Hardware
implementation of the Salsa20 and Phelix stream
ciphers.Proc. Canadian Conference on Electrical
and Computer Engineering CCECE 200FEE,
1125-1128.

