
Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 2, 2015

 117

Sugier Jarosław
Wrocław University of Technology, Wrocław, Poland

Efficiency of FPGA architectures in implementations of AES, Salsa20
and Keccak cryptographic algorithms

Keywords

block cipher, hash function, hardware implementation, loop unrolling, pipelining, FPGA

Abstract

The aim of this paper is to test efficiency of automatic implementation of selected cryptographic algorithms in
two families of popular-grade FPGA devices from Xilinx: Spartan-3 and Spartan-6. The set of algorithms
include the Advanced Encryption Standard (AES) used worldwide as a symmetric cipher along with two hash
algorithms: Salsa20 (developed with ECRYPT Stream Cipher Project) and Keccak permutation function (core
of the new SHA-3 standard). The ciphers were expressed in 5 architectures: the basic iterative one (one instance
of a round in hardware) and its four derivatives created by loop unrolling and pipelining. With each of the
architectures implemented in both Spartan devices this gave the total of 30 test cases, which, upon automatic
implementation, created a comprehensive and consistent base for comparison of the ciphers, applied
architectures and FPGA devices used for implementation.

1. Introduction

Safe and reliable operation of contemporary complex
technical systems very often rests on secure and
dependable data acquisition, transmission or storage,
hence cryptography methods have recently become
an indispensable element in design and analysis of
system safety and stability. Intensive research
activity in this area led to development of a number
of methods which are used in symmetric or
asymmetric cryptography, digital fingerprinting or
message authentication. If very high processing
speed is required these algorithms need to be
implemented in dedicated, often configurable
hardware.
The aim of this paper is to test efficiency of
automatic implementation of selected cryptographic
algorithms in two families of popular-grade FPGA
devices from Xilinx: more mature and established
Spartan-3 ([15]) and newer, more advanced Spartan-
6 ([16]). The set of cryptographic algorithms include
the Advanced Encryption Standard (AES) – a
symmetric block cipher along with two hash
algorithms: Salsa20 and Keccak-f[400].
In the literature there are many proposals for efficient
hardware implementations of these particular
algorithms ([1], [4]-[8], [10]-[14], [17]). This paper
does not aim at supplementing these kind of efforts.

Instead, the goal of this work is to explore essential
properties of the ciphers when they are implemented
in an FPGA device in the basic iterative
organization – one cipher round instantiated in
hardware – along with other variants created by loop
unrolling, optionally with pipelining.
Each of the three algorithms was realized in five
architecture variants and all of them were
implemented on two hardware platforms, so in total
30 test cases were investigated. This created a
comprehensive and consistent base for comparison of
the ciphers, architectures and FPGA devices.
The text is organized as follows. In the next chapter
operation of the three algorithms is briefly discussed
in the light of their further implementation in
hardware. Then, in chapter 3 we will present the
selected set of five organizations and comment on
their specific realization for each of the algorithms.
Finally, in chapter 4 parameters of the 30 test cases
obtained after implementation will be presented
which will provide a base for discussion of size,
performance and efficiency characteristics of the
algorithms in different hardware configurations.

2. Presentation of the algorithms

In the following discussion we will use the ‘⊕’ and
‘<<’ symbols for elementary operations executed

Sugier Jarosław
Efficiency of FPGA architectures in implementations of AES, Salsa20 and Keccak cryptographic algorithms

 118

over bit vectors: bitwise exclusive or (xor) and left
rotation by a given number of bits. Furthermore, nr
will denote number of rounds repeated iteratively in
the complete loop of the cipher.

2.1. Advanced Encryption Standard (AES)

The algorithm, which is formally defined in [9],
belongs to a class of symmetric block ciphers, i.e. it
uses the same secret key to both encryption and
decryption of a fixed-size block of data – so called
state. In this work we investigate the most widely
used AES-128 version where both the data and the
key are 128b long. From functional point of view
organization of the cipher is a substitution-
permutation network which processes the state in
a series of 10 almost identical rounds. Each round
uses its own key which is generated from the user-
supplied external key by a separate key expansion.
Data encoding and key expansion share very similar
set of elementary transformations and constitute two
128b-wide processing paths which needs to be
executed in parallel one along another.
The state is interpreted as 4x4 array of bytes and the
round apply four elementary transformations upon it
in the following order (see the right part of Figure 1):
- substitution SBox() where each byte of the state is
replaced by another one according to a specific
invertible static transcoding function;
- row shifting SR() where each the k-th row (k =
0…3) of the state array is rotated by k columns to the
left in encryption or to the right in decryption;
- column mixing MC() operating on whole state
columns rather than on individual bytes and
calculating its result through an involved series of
shift and xor operations (which models polynomial
multiplication modulo x4 + 1 over GF(28));
- key mixing where the round key is simply xor’ed
bit-by-bit over the state vector.
The complete encryption path consist of one
introductory round which is followed by 10 regular
ones (of which the last one is slightly modified). Let:
P – a 128b plaintext (the input),
Bi – a state block that enters the i-th regular round Ri

(i = 0 denotes the introductory round),
K – external user key,
Ki – the key generated in the expansion for round i,
C – encoded ciphertext (the output).
The whole encoding can be expressed in the
following way:

 B1 = P ⊕ K
 Bi+1 = MC(SR(SBox(Bi))) ⊕ Ki, i = 1 … 9
 C = SR(SBox (B10)) ⊕ K10

Additionally to this, the keys Ki need to be generated
from the main key K by another computations which,
in turn, operate on 32b words wi, i = 0..43. Initially,
the first four words are filled with bits from the user
key:

 { w0, w1, w2, w3} = K

and then, for i = 1..10, every group of four words that
creates round key Ki is computed as follows:

 w4i = SBox(w4i-1 << 8) ⊕ Rcon[i] ⊕ w4i-4
 w4i+1 = w4i ⊕ w4i-3
 w4i+2 = w4i+1 ⊕ w4i-2
 w4i+3 = w4i+2 ⊕ w4i-1
 Ki = {w4i, w4i+1, w4i+2, w4i+3 }

Here the SBox transformation uses exactly the same
substitution boxes as the cipher path and the Rcon is
a vector of ten 32b constants statically defined in the
standard. Data flow is visualized in the left part of
Figure 1.

w4i

w4i+2

w4i+3

w4i+ 1

Ki

Si
16×SBox8b

Mix Col.

R
o

un
d

R i

w4i–1
w4i–2
w4i–3
w4i–4

R
i

–
1

32b 128b

 Key expansion Cipher

Si+1

4×
S

B
o

x8
b

b

Shift Rows

Figure 1. Data flow of one AES round: key
expansion and cipher paths

Compared to other algorithms discussed in this paper
the AES has the largest diversity of internal
processing with additional hardware required for key
expansion introducing extra complications. Although
the state size is 128b, together with key expansion
words the entire data path is 256b wide.

2.2. Salsa20 hash function

At its core the Salsa20 ([2]) is essentially a 512b
hash function, i.e. Salsa20(x) is a 512b hash value
computed for the input x of the same size. Internally
the computations are executed over the 512b state q
which is divided into 16 x 32b words: q = (q0, q1, …
q15). The state is transformed in 20 rounds with
different permutations of the state words passed as

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 2, 2015

 119

the input to even- and odd-numbered rounds but
otherwise the in-round processing is identical.
In Salsa20 there is no key expansion path; instead,
the external key is embedded into the input x
producing directly half of the 16 state words and then
the 512b vector is processed in its entirety.
Moreover, in the entire algorithm only the following
three basic transformations are used, all operating on
32b words:
- bitwise exclusive or (xor) of the two words;
- arithmetic sum of the two words taken mod 232,

denoted as +;
- rotation of a word to the left by some given

(constant) number of positions.
The basic organizational unit of the cipher is
a quarterround function which transforms a group of
four state words: quarterrorund(w0, w1, w2, w3) =
(w0’, w1’, w2’, w3’) in the following way:

 w1’ = w1 ⊕ ((w0 + w3) << 7)
 w2’ = w2 ⊕ ((w1’ + w0) << 9)
 w3’ = w3 ⊕ ((w2’ + w1’) << 13)
 w0’ = w0 ⊕ ((w3’ + w2’) << 18)

The flow of data which results from the above
equations is graphically visualized in Figure 2.

w0

w1

<<7

<<9

<<13

<<18

w2

w3

w0’

w1’

w2’

w3’

quarterround

- sum mod 232 - ExclusiveOr
<< n - left rotation

Figure 2. Transformations of the state words in the
Salsa20 quarterround block

Four quarterrounds operating in parallel transform
the entire state q and constitute a single round of the
cipher. Depending on its input, a round can be one of
the two kinds: a row round or a column round. A row
round function is defined as rowround(q) = q’ such
that

 (q0’, q1’, q2’, q3’) = quarterround(q0, q1, q2, q3)

 (q5’, q6’, q7’, q4’) = quarterround(q5, q6, q7, q4)

 (q10’, q11’, q8’, q9’) = quarterround(q10, q11, q8, q9)

 (q15’, q12’, q13’, q14’) =
quarterround(q15, q12, q13, q14)

whereas a column round function is defined as
columnround (q) = q’ such that

 (q0’, q4’, q8’, q12’) = quarterround(q0, q4, q8, q12)

 (q5’, q9’, q13’, q1’) = quarterround(q5, q9, q13, q1)

 (q10’, q14’, q2’, q6’) =
 quarterround(q10, q14, q2, q6)

 (q15’, q3’, q7’, q11’) =
 quarterround(q15, q3, q7, q11)

A column round followed by a row round make up
so called double round:

 doubleround(q) = rowround(columnround(q))

and the entire hash is computed by applying ten
times the double round to the input x and then by
adding the result:

 Salsa20(x) = doubleround10(x) + x

Compared to the AES Salsa20 has much simpler
elementary operations: all of them operate bit-wise
on 32b words only and, in particular, they do not
involve 8b substitution boxes. Also uniformity of the
rounds is very good with no need to expand the key.
Nevertheless, with 512b wide data path and 20
rounds the entire cipher is significantly bigger in
size.

3. Keccak-f[400] permutation function

The Keccak algorithm – or, more precisely, the
family of 7 different in size Keccak algorithms – are
built around Keccak-f[b] permutation functions: for
parameter l = 0, 1, … 6 each function operates on
a state A consisting of b = 25 × 2l bits (b = 25, 50,
100, 200, 400 800, or 1600) where a single word of
w = 2l bits length is called a lane. Every function
computes its result processing the state in a series of
nr = 12 + 2l rounds (nr = 12, 14, 16, 18, 20, 22, or
24). In this work we include Keccak-f[400] in the
comparison – with 20 rounds, 16b lanes and 400b
state.
The reference specification in [3] describes one
round of Keccak-f[b] as a sequence of 5
transformations:

 Round = ι ○χ ○π ○ρ ○θ

Computing the permutation is equivalent just to
applying the round function nr times:

Keccak- f[b](A)
{
 for i = 0 to nr – 1
 A = Round[b](A, RC[i]);
 Return A;
}

Sugier Jarosław
Efficiency of FPGA architectures in implementations of AES, Salsa20 and Keccak cryptographic algorithms

 120

where RC[i] are w-bit constants that are
generated by specific binary linear feedback shift
register (LSFR) defined in the specification.
Operation of a single round is specified in a simple
pseudo-code as follows:

Round[b](A, RC)
{
 -- θ step
 for x = 0 to 4
 C[x] = A[x,0] xor A[x,1] xor A[x,2]
 xor A[x,3] xor A[x,4];
 for x = 0 to 4
 D[x] = C[x-1] xor (C[x+1] << 1);
 for y = 0 to 4
 for x = 0 to 4
 A[x, y] = A[x, y] xor D[x];
 -- ρ and π steps
 for y = 0 to 4
 for x = 0 to 4
 B[y, 2* x + 3* y] = A[x, y]<<r[x, y];
 -- χ step
 for y = 0 to 4
 for x = 0 to 4
 A[x, y] = B[x, y] xor

 ((not B[x+1, y]) and B[x+2, y]);
 -- ι step
 A[0,0] = A[0,0] xor RC;
 return A;
}

In the above procedure the state A is represented as
a 5 x 5 array of lanes and three additional auxiliary
arrays of lanes: C[0…4], D[0…4] and B[0…4, 0…4]
are needed to store intermediate values. Matrix r[x,
y] used in the ρ step provides 25 constant rotation
offsets explicitly given in the specification.
Furthermore, all index arithmetic is taken modulo 5
and rotating by a positive offset moves each bit in
direction of the increasing index.
Although the above pseudo code is relatively simple
and makes use only of bit negations, exclusive or
operands and rotations, visualisation of the resultant
data flow in a diagram similar to that of Figures 1 or
2 is practically impossible. The 3-dimensional array
A[x][y][z] is divided in some transformations into so
called planes (y = const), by another ones into slices
(z = const) and by yet another ones into sheets (x =
const) – thus the state processing cannot be
decomposed into paths operating on constantly
separated words like it was in AES and Salsa20. The
only paths that can be traced must be defined down
to the level of individual bits – and this makes
Keccak flow extremely elaborate.

3. Implementing the ciphers in hardware

All the algorithms investigated in this work have
strict round-based organization, i.e. they apply their
processing by repeatedly executing (almost identical)
block of operations (round) over some chunk of data
(state). In hardware implementations this fact can
lead to many potential schemes that blend different
aspects of iterative, pipelined and combinational
architectures. Because the aim of this study was to
verify scalability of the algorithms with respect to the
number of rounds implemented in hardware, the
following 5 organizations was selected for the test
suite:
- x1 – the basic iterative architecture with one round

implemented in hardware and the state being
passed though it repeatedly in nr clock cycles (i.e.
each complete round is computed in one clock
tick);

- x2 – modification of the above with
a combinational cascade of two rounds
implemented in hardware with total computation
done in nr/2 clock cycles (in each clock tick the
state is propagated through two rounds);

- x5 – as the previous case but with 5 rounds in
hardware and nr/5 clock cycles required for
complete computation;

- PPL2 – the modified x2 organization with pipeline
registers added after each round: two chunks of
data are processed in parallel (twice the throughput)
but the completion needs again nr clock cycles (in
one clock tick the state is transformed by one
round);

- PPL5 – the pipelined x5 organization with
5 chunks of data processed in parallel and
consequently higher throughput.

The x1 architecture is the one which takes the least
amount of hardware resources and will be used as
a point of reference in evaluation of the remaining
cases. Their size (e.g. number of logic cells used in
the FPGA array) should increase proportionally to
the number of rounds implemented in hardware:

 Sizexk ≈ Sizex1 · k
 SizePPLk ≈ Sizex1 · k

(1)

Additional registers which are added in the pipelined
organizations usually do not introduce any extra
burden in the FPGA arrays and therefore the above
estimations are identical for both xk and PPLk cases.
Maximum frequency of operation – or the minimum
clock period – depends on the other hand on the
number of rounds the state must go through in one
clock cycle:

 Tclkxk ≈ Tclkx1 · k (2)

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 2, 2015

 121

 TclkPPLk ≈ Tclkx1

3.1. AES

Uniformity of iterative processing in this cipher is
questioned by the two factors: a) the initial round
(i = 0) is significantly different form the following
ones; b) the last round is slightly modified with one
elementary transformation omitted.
Due to the first factor, all the AES architectures have
an extra introductory round implemented before the
regular loop although it is a very simple one: it
consists of just 128b xor logic but it still makes
estimation of eq. (1) too restrictive – actual sizes of
xk and PPLk architectures should be somewhat
smaller than “·k”. What is also important, its
execution needs a separate clock cycle (which is
needed anyway for preparation of the first round key,
K1) so the total computation time is 11·Tclk for x1
and PPLk architectures and 6 or 3 (1 + 10/2 or 1 +
10/5) Tclk for x2 and x5 cases.
The second factor – different processing in the last
round – requires special multiplexers for bypassing
column mixing inside the round hardware, which
again weakens the estimations (1) and (2).

3.2. Salsa20

Round repetitions are much more uniform in Salsa20
with only exception: the actual fragment of the
cipher which is repeated iteratively is a double round
(executed 10 times) rather than a single round,
because this can be of a column or a row type. In this
situation, implementation of a strict iterative scheme
“20 repetitions of a single round” would lead to
a 512b wide multiplexer which would switch
between column and row round inputs, impairing
both size and speed of the hardware.
In [13] we have shown that a better alternative is to
consider a double round as an elementary unit of the
iteration and such an organization – “10 repetitions
of a double round” – was adopted in this work to be
the basic “x1” architecture with nr = 10. Therefore,
the “x2” organization computes the result in 5, while
“x5” – in 2 clock cycles. This is on par with latencies
of the AES variants but (nearly) doubles the sizes.

3.3. Keccak

Compared to the AES and Salsa20, Keccak has the
most uniform iteration with the only difference
between the rounds in using 20 different 16b
constants needed for the ι step. These constants could
be computed on-the-fly by LFSR registers
independently for each round instance but it was
simpler to tabularize them in distributed ROM
modules which, being relatively small, do not add

noticeably to the total size but (compared to the
LFSR operation) conveniently simplify timing of
data distribution. This solution was optimal in both
xk and PPLk architectures.
It should be noted that Keccak has the highest
number of rounds in our comparison (20); with nr =
10 AES and Salsa20 require half the iterations.

4. Results of the implementation

All 5 architectures of the 3 ciphers were described in
the VHDL language at register transfer level (RTL)
as closely as possible to the standard specification,
using consistent coding style in all the cases. Then,
the code was automatically synthesized and
implemented in Xilinx ISE software ver. 14.7 with
XST synthesis tool, and targeted for two FPGA
devices – Spartan-3 (XC3S2000-5, package
FGG676) and Spartan-6 (XC6SLX150-3, same
package). This gave a total of 30 implementations
under the tests.
Devices XC3S2000 and XC6S150 were selected to
be sufficiently large to accommodate the most sized
x5 or PPL5 architectures. In terms of occupied LUT
generators (which is equivalent to the number of
logic cells) they took from 15 (Keccak) to 50 (AES)
percent of the resources in Spartan-3 chip and from
4 (Keccak) to 13 (Salsa20) percent in Spartan-6
device.
The smallest x1 design, on the other hand, needed
just 4 ÷ 21% of Spartan-3 and merely 1.5 ÷ 3.7% of
Spartan-6. This shows that size of the FPGA array
did not limit the implementations and did not affect
the results.

4.1. Implementations of the basic iterative
architecture

Parameters after implementation of the basic iterative
architectures in the two chips are given in Table 1.
Design sizes are indicated by the number of used
Look-Up Tables (LUT); number of registers (flip-
flop elements) depend in a very little degree on
efficiency of physical implementation and will not be
considered in this analysis. The second column
additionally lists the number of logic elements found
in the longest (lengthiest) path in the design which
also determined minimum clock period (given in the
third column). Performance parameters were
calculated from the value of minimum Tclk which
was estimated by the implementation tools in static
timing analysis of the final, fully routed design.
The figures allows for comparison of the three
algorithms and efficiency of their implementations
on the two different platforms. As it was already
discussed in [10] and [11], the AES in the older
Spartan-3 array needs very large amount of LUT

Sugier Jarosław
Efficiency of FPGA architectures in implementations of AES, Salsa20 and Keccak cryptographic algorithms

 122

elements for implementation of 8b substitution boxes
hence the size of this particular design is
exceptionally large, but in Spartan-6 its size is
reduced and remains comparable with Keccak.
What is the most significant observation for Salsa20,
on the other hand, is that its elementary operations
are worst suited for aggregation in LUT elements:
processing of one double round needs 102 (Spartan-
3) and 50 (Spartan-6) levels of logic versus 3 ÷ 6
levels in AES or Keccak. This also affects
performance (by far the lowest operating frequency)
and explains why the LUT usage in Salsa is much
higher than in Keccak on both platforms.

Table 1. Implementation parameters of the basic x1
architecture for the three ciphers and two platforms

N

um
be

r
of

 L
U

T
s

M
ax

. l
ev

el
s

of

lo
gi

c

m
in

 T
cl

k
[n

s]

f m
a

x [
M

H
z]

La
te

nc
y

[n
s]

T
hr

ou
gh

pu
t

[M
bp

s]

Spartan-3

AES 8 755 6 13.1 76.3 144 888
Salsa20 3 535 102 51.9 19.3 519 987
Keccak 1 777 4 8.9 112 178 2 242

Spartan-6

AES 1 400 3 6.3 160 69 1 860
Salsa20 3 367 50 22.7 44.1 227 2 256
Keccak 1 339 3 4.9 204 98 4 090

The Keccak algorithm turns out to be the fastest one
within this comparison: limited number of logic
levels led to the highest frequency of operation
which, thanks also to large amount of data processed
in the state, gave the best throughput result.
Generally the newer, more powerful and faster
Spartan-6 family shows its advantages over the
predecessor reducing on average by half the
minimum clock cycle: just by moving the same
design to the new platform its throughput is doubled.

4.2. Scaling effects with increasing number of
implemented rounds

In order to evaluate scaling of the algorithms with
increasing number of implemented rounds (two in x2
and PPL2 designs or 5 in x5 and PPL5), parameters
obtained for those architectures were compared to
the estimates from equations (1) and (2). Table 2
presents quotients of actual parameters and those
estimates: 1.0 denotes ideal match, numbers lower
than 1.0 – situation when the actual parameter is

lower than its estimate, etc. Additionally, the table
lists percentage of the longest delay which is
generated by logic elements (with the remaining part
attributed to routing resources) – this serves as an
indication what the extra cost is induced by routing
resources in each implementation.

Table 2. Speed (Tclk) and size (number of LUT) of
the derived architectures as fractions of the values
estimated from the x1 case; plus logic part of the
lengthiest path

Spartan-3 Spartan-6

T
cl

k
vs

 E
st

.

LU
T

 v
s.

 E
st

.

Lo
ng

es
t

pa
th

-

lo
gi

c
[%

]

T
cl

k
vs

 E
st

.

LU
T

 v
s.

 E
st

.

Lo
ng

es
t

pa
th

-

lo
gi

c
[%

]

 AES

x2 0.80 0.61 30.5 0.78 0.84 21.8

x5 0.67 0.36 27.9 0.76 0.71 18.6

PPL2 1.03 0.66 26.6 0.91 0.82 25.5

PPL5 1.04 0.47 26.9 0.89 0.70 25.0

 Salsa20

x2 0.96 0.79 51.5 1.21 0.80 25.6

x5 1.05 0.66 44.1 1.22 0.68 24.4

PPL2 0.96 0.79 54.6 1.27 0.82 27.5

PPL5 1.09 0.66 47.6 1.22 0.72 31.8

 Keccak

x2 0.89 0.79 26.0 1.10 0.81 15.6

x5 0.85 0.66 30.4 1.62 0.54 10.2

PPL2 0.97 0.84 30.7 1.72 0.79 14.3

PPL5 0.98 0.69 38.8 1.44 0.51 13.9

With respect to these figures AES algorithm behaves
in the most predictable way and offers results which
are always close to or better than the expectations. In
particular we can see that long combinational paths
which are present in x2 and x5 organizations made
possible efficient optimizations in partitioning of the
logic into LUT generators, especially in Spartan-3
arrays. Such an optimization significantly reduced
their use: the record is 36% of the expected LUT
elements actually used in the x5 case in Spartan-3 (in
Spartan-6 optimization is not as spectacular: at most
down to 71%). Savings in Tclk are unquestionable in
x2 and x5 designs but are absent in the pipelined
cases implemented in Spartan-3.
The reductions in Tclk are not so evident for Salsa20
and Keccak. While in Spartan-3 Salsa20 designs
actually do not offer any noticeable improvement

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 2, 2015

 123

over the estimations (ratios 0.96 ÷ 1.09), for Keccak
the x2 and x5 design can reduce clock period to 85 ÷
89%.
Probably the most striking observation from Table 2
is that, in contrast to AES, in the newer (and
potentially much faster) Spartan-6 family reductions
in clock period are negative for both Salsa20 and
Keccak. For Salsa20 the actual clock periods are 21
÷ 27% longer than expected even though at the same
time the optimization in LUT usage remains quite
good (down to 68 ÷ 82% vs. estimations). This
negative tendency becomes dramatic in Keccak:
clock periods are by 62% longer than expected in the
largest x5 organization and, notably, pipelining
added in the PPL5 case is only a partial solution (still
an increase by 44%, not seen in any implementation
of the two other ciphers).
The problems of Keccak in Spartan-6 should be
attributed to routing congestion which is confirmed
by comparing presented logic vs. routing ratio in the
longest path. With the values of 10.2 ÷ 15.9%,
Keccak designs in Spartan-6 have by far the lowest
logic parts amongst all the tested cases. Such small
values – and, consequently, high values for routing –
indicate that configurable connection schemas used
in the new Spartan-6 family do not fit particular
requirements of propagation rules of Keccak
individual bits which were noticed at the end of
chapter 2.3. Neither AES nor Salsa20 presented such
problems.

4.3. Evaluation of the two FPGA platforms

last point of analysis will be devoted to comparison
of size and speed metrics between the two hardware
platforms for all the 15 designs. Table 3 presents
ratios of numbers of LUT and values of Tclk on the
two platforms, i.e. the parameter for Spartan-3 was
divided by the value for Spartan-6 and the quotient is
included in the table.
What becomes evident when looking at the size
comparison (the upper half of the table) is that AES
is the only cipher that benefits remarkably from
moving to the newer Spartan-6 platform: the size is
reduced from 6.3 to 3.2 times. In Keccak the
reductions are still noticeable although only by
factors 1.3 ÷ 1.8. In Salsa20, on the other hand,
number of LUT elements remains virtually
unchanged with PP5 case being the only one when
this number actually increases – and this despite the
fact that 6-input LUT generators in Spartan-6 are
much more powerful than their 4-input counterparts
in Spartan-3. This again confirms that this potential
of the new platform remains useless in
implementation of atomic operations defined for this
cipher.

Table 3. Ratios of size (number of LUT) and speed
(Tclk) in Spartan-3 vs. Spartan-6 implementations

x1 x2 x5 P
P

L2

P
P

L5

LUT (S3 : S6)

AES 6.25 4.58 3.17 5.07 4.23

Salsa20 1.05 1.03 1.02 1.00 0.97

Keccak 1.33 1.29 1.64 1.42 1.79

Tclk (S3 : S6)

AES 2.09 2.14 1.83 2.36 2.43

Salsa20 2.28 1.82 1.97 1.73 2.05

Keccak 1.82 1.48 0.96 1.03 1.25

Speed comparison adds another evidence of the
same problems that plagued Keccak implemented in
Spartan-6 and were visible in the previous point.
While both AES and Salsa20 organizations reduce
their clock periods by 2.43 ÷ 1.73 on the new
platform, Keccak demonstrate significant problems
with scaling when its size increases. For the x1 and
x2 designs the Tclk reduction is by 1.82 and 1.48, but
in x5 the ratio is smaller than 1 i.e. clock period in
Spartan-3 is actually shorter that in Spartan-6. It is
a surprising and unusual situation that this design is
slower in the new FPGA device than it was in its
predecessor.

5. Conclusions

In this work we have analyzed efficiency of
hardware implementations of three well-known
cryptographic algorithms on two FPGA platforms,
illustrating potential strengths and weaknesses when
basic iterative architecture of any cipher is unrolled,
with and without pipelining.
The results show that AES, the oldest of the ciphers,
is the one which can be implemented in both
Spartan-3 and Spartan-6 devices with the most
predictable results. Its realization particularly in
Spartan-6 is advantageous because in the older
family 8b substitution boxes generate very large
amount of resources but still even in such outsized
designs in Spartan-3 unrolling and pipelining can be
applied with positive and predictable effects.
Slasa20 turned out to be the algorithm with
elementary operations which are the most difficult
for implementation with LUT generators available in
the FPGA array: data path of one double round in
this cipher needed 102 (Spartan-3) or 50 (Spartan-6)
levels of logic while in the other algorithms – at most
6. This led to large designs (large number of LUT

Sugier Jarosław
Efficiency of FPGA architectures in implementations of AES, Salsa20 and Keccak cryptographic algorithms

 124

generators which were utilized to a little degree) and
slow timing.
The problem with Keccak, on the other hand, is with
routing congestion which start to appear in Spartan-6
devices in bigger (more unrolled) architectures but
does not affect Spartan-3 array. As an extreme
example, although AES and Salsa implementations
are on average twice faster in Spartan-6, Keccak’s x5
design runs 4% slower and the pipelined variant –
not as much faster.

References

[1] ATHENa Database of FPGA Results, available at
http://cryptography.gmu.edu/athenadb/fpga_hash,
access date: March 2015.

[2] Bernstein, D. J. (2008). The Salsa20 family of
stream ciphers. New Stream Cipher Designs.
Springer, 84-97.

[3] Bertoni, G., Daemen, J., Peeters, M. & Van
Assche, G. (2011). The Keccak reference.
http://keccak.noekeon.org/, access date: March
2015.

[4] Gaj, K., Homsirikamol, E., Rogawski, M.,
Shahid, R. & Sharif, M. U. (2012).
Comprehensive evaluation of high-speed and
medium-speed implementations of five SHA-3
finalists using Xilinx and Altera FPGAs. The
Third SHA-3 Candidate Conference, Washington,
DC, USA.

[5] Gaj, K., Kaps J. P., Amirineni, V., Rogawski, M.,
Homsirikamol, E. & Brewster, B.Y. (2010).
ATHENa – Automated Tool for Hardware
EvaluatioN: Toward Fair and Comprehensive
Benchmarking of Cryptographic Hardware Using
FPGAs. 20th International Conference on Field
Programmable Logic and Applications, Milano,
Italy.

[6] Gaj, K., Southern, G., & Bachimanchi, R. (2007).
Comparison of hardware performance of selected
Phase II eSTREAM candidates. Proc. State of the
Art of Stream Ciphers Workshop, eSTREAM,
ECRYPT Stream Cipher Project, Report, Vol. 26,
p. 2007.

[7] Junkg, B. & Apfelbeck, J. (2011). Area-efficient
FPGA implementations of the SHA-3 finalists.
2011 International Conference on Reconfigurable
Computing and FPGAs (ReConFig), IEEE, 235-
241.

[8] Liberatori, M., Otero, F., Bonadero, J.C. &
Castineira, J. (2007). AES-128 Cipher. High
Speed, Low Cost FPGA Implementation. Proc.
Third Southern Conf. on Programmable Logic.
Mar del Plata, Argentina, IEEE Comp. Soc. Press.

[9] National Institute of Standards and Technology
(2001). Specification for the ADVANCED

ENCRYPTION STANDARD (AES). Federal
Information Processing Standards Publication
197. http://csrc.nist.gov/publications/PubsFIPS
.html (accessed March 2015).

[10] Sugier, J. (2012). Implementation of symmetric
block ciphers in popular-grade FPGA devices.
Journal of Polish Safety and Reliability
Association 3, 2, 179-187.

[11] Sugier, J. (2012). Implementing AES and Serpent
ciphers in new generation of low-cost FPGA
devices. Advances in Intelligent and Soft
Computing: Complex Systems and Dependability.
Springer, 170, 273-288.

[12] Sugier, J. (2013). Implementing Salsa20 vs. AES
and Serpent in Popular-Grade FPGA Devices.
Advances in Intelligent and Soft computing: New
Results in Dependability and Complex Systems.
Proc. 8th Int. Conf. Dependability and Complex
Systems DepCoS-RELCOMEX, Springer, 224,
431-438.

[13] Sugier, J. (2013). Low-cost hardware
implementations of Salsa20 stream cipher in
programmable devices. Journal of Polish Safety
and Reliability Association 4, 1, 121-128.

[14] Sugier, J. (2014). Low cost FPGA devices in high
speed implementations of Keccak-f hash
algorithm. Advances in Intelligent and Soft
computing: New Results in Dependability and
Complex Systems. Proc. 9th Int. Conf.
Dependability and Complex Systems DepCoS-
RELCOMEX, Springer, 286, 433-442.

[15] Xilinx, Inc. (2009). Spartan-3 Family Data Sheet.
www.xilinx.com (ds099.pdf); retrieved March
2015.

[16] Xilinx, Inc. (2011). Spartan-6 Family Overview.
www.xilinx.com (ds160.pdf); retrieved March
2015.

[17] Yan, J., & Heys, H. M. (2007). Hardware
implementation of the Salsa20 and Phelix stream
ciphers. Proc. Canadian Conference on Electrical
and Computer Engineering CCECE 2007. IEEE,
1125-1128.

