PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow characterization in mine ventilation fan blade design using CFD

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In axial ventilation fans, the generation of a uniform flow velocity is desirable for better efficiency. To that end, different fan blade types have been developed to achieve better flow uniformity. This article aimed to characterize the flow distribution and its uniformity in four blade designs, namely constant chord, tapered blade, skewed blade, and tapered skewed blade, using Computational Fluid Dynamics (CFD). The study employs an iterative study where key study decisions are made as the study progresses. The study began with the selection of a blade profile for the study. A comparative study between the NACA seven-digit and four-digit series was conducted and for its higher flow throughput, the four-digit airfoil profile was selected. Next, with 30 and 40° Angle of Attack (AoA), the constant chord blade flow pattern is characterized. At 40° AoA flow disturbance and high-velocity spots were observed establishing the problem statement. Following that, three optimization strategies (tapering, skewing, and taper skewing) were applied in the design, and the flow pattern of each design was studied. Using a dispersion study a flow uniformity comparison between the models conducted. The property trade-off between three key performance indicators: efficiency, flow rate, and flow uniformity studied. The result shows an axial fan having a higher efficiency doesn't necessarily mean it has higher throughput whereas lower flow dispersion relates to the system's higher efficiency. Therefore, it can be concluded that seeking higher efficiency and flow uniformity in the design and development of axial fans comes with system throughput trade-off.
Rocznik
Strony
144--156
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • FDRE Ministry of Mines and Petroleum, Research and Development Directorate, Addis Ababa, Ethiopia
Bibliografia
  • [1] De la Vergne J. Hard rock miner's handbook. Edmonton: Stantec Consulting; 2008 [Online]. Available: http://www.stantec.com/content/dam/stantec/files/PDFAssets/2014/Hard%20Rock%20Miner%27s%20Handbook%20-dition%205_3.pdf. [Accessed 12 March 2021].
  • [2] Sterling D, Johnson G. Identifying opportunities to reduce the consumption of energy across mining and processing plants. 2010.
  • [3] Sharma RN. Economics of mine ventilation. Minetech 2002; 23.
  • [4] Papar R, Szady A, Huffer WD, Martin V, McKane A. Increasing energy efficiency of mine ventilation systems. 1999.
  • [5] Demirel N. Energy-Efficient Mine Ventilation Practices. Energy Effic Miner Ind 2018:287-99.
  • [6] Eck B. Design and operation of centrifugal, axial-flow and cross-flow fans. Oxford: Pergamon Press; 1973.
  • [7] Dugao Z, Jiang Z. Optimization design of an axial-flow fan used for mining local-ventilation. Comput Ind Eng 1996; 31(3-4):691-6.
  • [8] Panigrahi DC, Mishra DP. CFD simulations for the selection of an appropriate blade profile for improving energy efficiency in axial flow mine ventilation fans. J Sustain Min 2014; 13(1):15-21.
  • [9] Petrov NN, Popov NA. Ways of improving economy and reliability of mine ventilation. J Min Sci 2004;40(5):531-6.
  • [10] Kazakov BP, Shalimov AV, Kiryakov AS. Energy-saving mine ventilation. J Min Sci 2013;49(3):475-81.
  • [11] Vutukuri VS, Lama RD. Environmental Engineering in Mines. Cambridge University Press; 1986.
  • [12] Zadravec M, Basic S, Hribersek M. The influence of rotating domain size in a rotating frame of reference approach for simulation of rotating impeller in a mixing vessel. J Eng Sci Technol 2007;2(2):126-38.
  • [13] Tabib M, Rasheed A, Siddiqui MS, Kvamsdal T. A full-scale 3D Vs 2.5 D Vs 2D analysis of flow pattern and forces for an industrial-scale 5MW NREL reference wind-turbine. Energy Procedia 2017;137:477-86.
  • [14] Izadi MJ, Falahat A. Effect of blade angle of attack and hub to tip ratio on mass flow rate in an axial fan at a fixed rotational speed. In: Fluids Engineering Division Summer Meeting. 48401; 2008. p. 903-13.
  • [15] Falahat A. Numerical and experimental optimization of flow coefficient in tubeaxial fan. Int J Multidiscip Sci Eng. 2011; 2(5):24-9.
  • [16] Butterfield CP, Musial WP, Simms DA. Combined experiment phase 1. Final report. Golden, CO (United States): National Renewable Energy Lab; 1992.
  • [17] Xingshuang ZSWJW. Study on aerodynamic performance of axial flow fan with bowed blade based on Bezier function. J Huazhong Univ Sci Technol Nat Sci Ed. 2013;3.
  • [18] Krömer F, Müller J, Becker S. Investigation of aeroacoustic properties of low-pressure axial fans with different blade stacking. AIAA J 2018;56(4):1507-18.
  • [19] Ouyang H, Li Y, Du Z-H, Zhong F-Y. Experimental study on aerodynamic and aero-acoustic performance of low pressure axial flow fan with circumferential skewed blades. J Aerosp Power 2006;21(4):668-74.
  • [20] Cai N, Li D, Zhong F. Optimum design and experiment on skewed-swept rotating blades. J Shanghai Jiaotong Univ 1997;vol. 31:81-5.
  • [21] Yang L, Ouyang H, Du Z. Experimental research on aero- dynamic performance and exit flow field of low pressure axial flow fan with circumferential skewed blades. J Hydrodyn Ser B 2007;19(5):579-86.
  • [22] Vad J, Kwedikha ARA, Horváth C, Balczó M, Lohász MM, Régert T. Aerodynamic effects of forward blade skew in axial flow rotors of controlled vortex design. Proc Inst Mech Eng Part J Power Energy 2007;221(7):1011-23.
  • [23] Giguere P, Selig MS. Design of a tapered and twisted blade for the NREL combined experiment rotor. Golden, CO (US): „ National Renewable Energy Lab.; 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-792ab00c-399d-4cbd-a6f3-7fb32d23f165
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.