Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study is devoted to examinations of the elastic modulus with the use of the uniaxial tensile test. The commertial purity titanium Grade 2 in the two states i.e. microcrystalline (mc-Ti) and nanocrystalline (nc-Ti) were examined. Bulk nc-Ti was fabricated by hydrostatic extrusion (HE) which is one of the severe plastic deformation methods (SPD). The elastic modulus of mc-Ti and nc-Ti were compared with the aim to analyze the influence of the nanostructure of titanium on its elastic modulus. The mc-Ti and nc-Ti samples were subjected to uniaxial tensile tests at various strain rates and various values of stress. Generally, higher elastic modulus values were obtained in microcrystalline titanium. The elastic modulus of mc-Ti was evaluated at 107 GPa on average, whereas the elastic modulus of nc-Ti was 94 GPa on average. The nanocrystalline titanium had a lower elastic modulus than its microcrystalline counterpart by 13% on average, which can be attributed to the presence of significant volume of amorphous regions in the structure. Moreover, in this case a lower standard deviation of all the results was obtained. In most cases, with higher applied stress (load) the value of the modulus was lower, whereas at higher strain rates its value was higher.
Czasopismo
Rocznik
Tom
Strony
927--934
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw, Poland
Bibliografia
- [1] K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Materialia 51 (2003) 5743–5774.
- [2] M.A. Meyers, A. Mishra, D.J. Benson, Progress in Materials Science 51 (2006) 427–556.
- [3] M. Kulczyk, W. Pachla, A. Mazur, R. Diduszko, H. Garbacz, M. Lewandowska, W. Łojkowski, K.J. Kurzydłowski, Materials Science Poland 23 (3) (2005) 839–846.
- [4] H. Matsumoto, S. Watanabe, S. Hanada, Materials Science and Engineering A 448 (2007) 39–48.
- [5] M. Niinomi, Materials Science and Engineering A243 (1998) 231–236.
- [6] P. Majumdar, S.B. Singh, M. Chakraborty, Materials Science and Engineering A 489 (2008) 419–425.
- [7] Y. Zhou, U. Erb, K.T. Aust, G. Palumbo, Scripta Materialia 48 (2003) 825–830.
- [8] H. Huang, F. Spaepen, Acta Materialia 48 (2000) 3261–3269.
- [9] G.E. Fougere, L. Riester, M. Ferber, J.R. Weertman, R.W. Siegel, Materials Science and Engineering A 204 (1995) 1–6.
- [10] K. Zhu, C. Li, Z. Zhu, C.S. Liu, Journal of Materials Science 42 (2007) 7348–7353.
- [11] G.B. de Souza, C.E. Foerster, S.L.R. da Silva, F.C. Serbena, C.M. Lepienski, C.A. dos Santos, Surface and Coatings Technology 191 (2005) 76–82.
- [12] L. Huang, J. Lu, M. Troyon, Surface and Coatings Technology 201 (2006) 208–213.
- [13] P. Wieciński, J. Smolik, H. Garbacz, K.J. Kurzydłowski, Thin Solid Films 519 (2011) 4069–4073.
- [14] H.S. Cao, J.J. Hunsinger, O. Elkedim, Scripta Materialia 46 (2002) 55–60.
- [15] K. Topolski, W. Pachla, H. Garbacz, Journal of Materials Science 48 (2013) 4543–4548.
- [16] K. Topolski, H. Garbacz, W. Pachla, K.J. Kurzydlowski, Solid State Phenomena 140 (2008) 191–196.
- [17] K. Topolski, H. Garbacz, K.J. Kurzydlowski, Materials Science Forum 584–586 (2008) 777–782.
- [18] S. Sakai, H. Tanimoto, H. Mizubayashi, Acta Materialia 47 (1999) 211–217.
- [19] J. Rajagopalan, J. Han, M.T. Saif, Science 315 (2007) 1831–1834.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79286e69-bb80-4ebb-aced-8063fac88917