Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, zinc oxide (ZnO) nanoparticle was fabricated using the extract of Olive leaves (referred as ZnO NPs), using the green synthesis process, and then explores its ability for photodegradation of different concentrations of sulfosulfuron herbicide (10, 20, 40, and 80) mg/L under visible light in batch mode system at pH of 6.8 and one g/L of ZnO NPs. Morphological and structural properties of the synthesized ZnO NPs have been characterized using X-ray diffraction (XRD), fourier transform infrared (FTIR), brunauer Emmett Teller (BET), vibrating sample-magnetometer (VSM), transmission electron microscope (TEM), scanning electron microscopy (SEM). The finding confirms that the maximum removal efficacy reached 82.08% under optimum conditions of 10 mg/L of sulfosulfuron Herbicide concentration, and 90 min. In addition, the reaction followed a first-order kinetics model with R2 ˃ 96. The study also showed that ZnO NPs could be used as a catalyst for four cycles of photocatalytic oxidation of organic contaminants before losing its effectiveness. According to the finding of this study, ZnO NPs has an acceptable efficiency in the elimination of herbicide, as their relatively simple synthesis, could be a suitable catalyst for the degradation and elimination of pharmaceutical residues.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
181--193
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Iraq
- Ministry of Water Resources, Baghdad, Iraq
autor
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Iraq
Bibliografia
- 1. Abbasian, R., Jafarizadeh-Malmiri, H. 2020.Green approach in gold, silver and selenium nanoparticles using coffee bean extract. Open Agriculture, 5(1), 761–767.
- 2. Abdelbaky, A.S., Abd El-Mageed, T.A., Babalghith, A.O., Selim, S., Mohamed, A.M. 2022. Green synthesis and characterization of ZnO nanoparticles uing Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and antiinflammatory activities. Antioxidants, 11(8), 1444.
- 3. Abdelbaky, A.S., Abd El-Mageed, T.A., Babalghith, A.O., Selim, S., Mohamed, A.M. 2022. Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and antiinflammatory activities. Antioxidants, 11(8), 1444.
- 4. Abdulrazaq, H.A., Alwared, A.I. 2023. Bio-synthesis of TiO2 using grape leaves extract and its application for photocatalytic degradation of ibuprofen from aqueous solution. Environmental Technology, 45(13), 2493–2505.
- 5. Abel, S., Tesfaye, J.L., Shanmugam, R., Dwarampudi, L.P., Lamessa, G., Nagaprasad, N., Benti, M., Krishnaraj, R. 2021. Research article green synthesis and characterizations of zinc oxide (ZnO) nanoparticles using aqueous leaf extracts of coffee (Coffea arabica) and its application in environmental toxicity reduction.
- 6. Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal M., Omer M., Alamzeb M., Salman S.M., Ali, S. 2019. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. International journal of nanomedicine, 5087–5107.
- 7. Al-Rbaihat, R., and Al-Marafi, M.N. 2023. Combined effect of silicon dioxide and titanium dioxide nanoparticles on concrete properties. Journal of Ecological Engineering, 24(12).
- 8. Alrubaie, E.A.A., Kadhim, R.E. 2019. Synthesis of ZnO nanoparticles from olive plant extract. Plant Archives, 19(2), 339–344.
- 9. Alwared A.A., Mohammed N.A., Al-Mosawi T.J., and Mohammed A.A. 2023. Solar-induced photocatalytic degradation of reactive red and turquoise dyes using a titanium oxide /xanthan gum composite, Sustainability, 15, 10815.
- 10. Andrade, P.H., Hureau, M., Mamede, A.S., Massiani, P., Legrand, A., Moissette, A. 2024. Longlived charge-separated states in ZnS/Na-MOR zeolite upon trans-stilbene adsorption. The Journal of Physical Chemistry C, 128(11), 4639–4647.
- 11. Asemani, M., Anarjan, N. 2019. Green synthesis of copper oxide nanoparticles using Juglans regia leaf extract and assessment of their physico-chemical and biological properties. Green Processing and Synthesis, 8(1), 557–567.
- 12. Awwad, A.M., Albiss, B., Ahmad, A.L. 2014. Green synthesis, characterization and optical properties of zinc oxide nanosheets using Olea europea leaf extract. Adv. Mater. Lett, 5(9), 520–524.
- 13. Bhardwaj, A., Sharma, G., Gupta, S. 2020. Nanotechnology applications and synthesis of graphene as nanomaterial for nanoelectronics. Nanomaterials and Environmental Biotechnology, 251–269.
- 14. Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., Jin Feng Li, Rupa E.J., Ahn J.C., Mathiyalagan R., Yang, D.C. 2019. Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene blue. Optik, 184, 324–329.
- 15. Choi, S., Phillips, M.R., Aharonovich, I., Pornsuwan, S., Cowie, B.C., Ton‐That, C. 2015. Photophysics of point defects in ZnO nanoparticles. Advanced Optical Materials, 3(6), 821–827.
- 16. Colmenares, J.C., Luque, R., Campelo, J.M., Colmenares, F., Karpiński, Z., Romero, A.A. 2009. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: an overview. Materials, 2(4), 2228–2258.
- 17. Dash, D.K., Panik, R.K., Sahu, A.K., Tripathi, V. 2020. Role of nanobiotechnology in drug discovery, development and molecular diagnostic. In Applications of nanobiotechnology. IntechOpen.
- 18. Dhananjay, P., Abhilash, M.R., Shilpa, N., NK, H.K., Gowtham, H.G., Aiyaz, M., Singh, B.S., Malik, A., Akhtar, S., Murali, M. 2024. Solar irradiation driven catalytic dye degradation by novel biosynthesized zinc oxide nanoparticles (ZnO–NPs) from Barleria mysorensis: Kinetics, reusability and mineralization studies. Journal of Molecular Structure, 1303, 137549.
- 19. Fagier, M.A. 2021. Plant‐mediated biosynthesis and photocatalysis activities of zinc oxide nanoparticles: a prospect towards dyes mineralization. Journal of Nanotechnology, 2021(1), 6629180.
- 20. Gnanasangeetha, D., Thambavani, D.S. 2013. Biogenic production of zinc oxide nanoparticles using Acalypha indica. Journal of Chemical, Biological and Physical Sciences (JCBPS), 4(1), 238.
- 21. Hamouda, R., Elshamy, M. 2021. Using biosynthesized zinc oxide nanoparticles to alleviate the toxicity on banana parasitic-nematode. Research, 67.
- 22. Hashemi, S., Asrar, Z., Pourseyedi, S., Nadernejad, N. 2016. Green synthesis of ZnO nanoparticles by Olive (Olea europaea). IET nanobiotechnology, 10(6), 400–404.
- 23. He, Z., Yang, H., Su, J., Xia, Y., Fu, X., Wang, L., Kang, L. 2021. Construction of multifunctional dual Z-scheme composites with enhanced photocatalytic activities for degradation of ciprofloxacin. Fuel, 294, 120399.
- 24. Herrmann, J.M. 1999. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis today, 53(1), 115–129.
- 25. Ibhadon, A.O., Fitzpatrick, P. 2013. Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3(1), 189–218.
- 26. Jucá, A.C.S., Lopes, F.H.P., Silva-Júnior, H.V., Silva, L.K.R., Longo, E., Szancoski, J.C., Cavalcante, L. 2021. Structure, morphology features and photocatalytic properties of α-Ag2WO4 nanocrystals-modified Palygorskite clay. J. Photocatal., 2(2), 114–129.
- 27. Lu, S., Li, J., Duan, F., Duan, L., Du, M., Chen, M. 2019. One-step preparation of Bi4O5BrxI2− x solid solution with superior photocatalytic performance for organic pollutants degradation under visible light. Applied Surface Science, 475, 577–586.
- 28. Mohammed N.A., Alwared A.I., Shakhir K.S., Sulaiman F.A. 2024. Synthesis, characterization of FeNi3@SiO2@CuS for enhance solar photocatalytic degradation of atrazine herbicides: Application of RSM, Results in Surfaces and Interfaces, 16, 100253.
- 29. Mohammed, N.A.A., Alwared, A.I., Salman, M.S. 2020. The decolorization of reactive yellow dye by advanced oxidation using continuous reactors. Iraqi Journal of Chemical and Petroleum Engineering, 21(2), 1–6.
- 30. Navarraa W., Saccoa O., Vaiano V., and Venditto V. 2023. Pesticides removal from wastewater using a pilot-scale photocatalytic reactor, Chemical Engineering transactions 98, 159–164.
- 31. Okab, A.A., Alwared, A.I. 2023. A dual S-scheme g-C3N4/Fe3O4/Bi2WO6/Bi2S3 heterojunction for improved photocatalytic decomposition of methylene blue: Proposed mechanism, and stability studies. Materials Science in Semiconductor Processing, 153, 107196.
- 32. Ong, C.B., Ng, L.Y., Mohammad, A.W. 2018. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536–551.
- 33. Paporisch, A., Laor, Y., Rubin, B., Eizenberg, H. 2020. Effect of repeated application of sulfonylurea herbicides on sulfosulfuron dissipation rate in soil. Agronomy, 10(11), 1724.
- 34. Patil, M.P., Kim, G.D. 2017. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied microbiology and biotechnology, 101, 79–92.
- 35. Patwa R., Nabanita Sahaa N., Sáha P. 2021.Green synthesis of zinc oxide nanoparticles, their characterization and utilization for photocatalytic removal of methylene blue, Prayogik Raayan. 2021 xx, 5(1), xx –xx.
- 36. Patwa, R., Saha, N., Sáhaa, P. 2021. Green synthesis of zinc oxide nanoparticles, their characterization and utilization for photocatalytic removal of methylene blue. Pray. Rasayan, 5.
- 37. Pearson, R.G. 1988. Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic chemistry, 27(4), 734–740.
- 38. Pergal, M.V., Kodranov, I.D., Pergal, M.M., Dojčinović, B.P., Stanković, D.M., Petković, B.B., Manojlović, D.D. 2018. Assessment of degradation of sulfonylurea herbicides in water by chlorine dioxide. Water, Air, & Soil Pollution, 229, 1–11.
- 39. Prasad, A.R., Ammal, P.R., Joseph, A. 2018. Effective photocatalytic removal of different dye stuffs using green synthesized zinc oxide nanogranules. Materials Research Bulletin, 102, 116–121.
- 40. Raafat, M., El-Sayed, A.S., El-Sayed, M.T. 2021. Biosynthesis and anti-mycotoxigenic activity of Zingiber officinale roscoe-derived metal nanoparticles. Molecules, 26(8), 2290.
- 41. Sarli, S., Kalani, M.R., Moradi, A. 2020. A potent and safer anticancer and antibacterial taxus-based green synthesized silver nanoparticle. International Journal of Nanomedicine, 3791–3801.
- 42. Schreyer, M., Guo, L., Thirunahari, S., Gao, F., Garland, M. 2014. Simultaneous determination of several crystal structures from powder mixtures: the combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. Journal of Applied Crystallography, 47(2), 659–667.
- 43. Sorbiun, M., Shayegan Mehr, E., Ramazani, A., Taghavi Fardood, S. 2018. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental Research, 12, 29–37.
- 44. Sulaiman, F.A., and Alwared, A.I. 2022. Ability of response surface methodology to optimize photocatalytic degradation of amoxicillin from aqueous solutions using immobilized TiO2/sand. Journal of Ecological Engineering, 23(5).
- 45. Xu, Z., Wu, Y., Song, L., Chinnathambi, A., Alharbi, S.A., Fang, L. 2020. Anticarcinogenic effect of zinc oxide nanoparticles synthesized from Rhizoma paridis saponins on Molt-4 leukemia cells. Journal of King Saud University-Science, 32(3), 1865–1871.
- 46. Yu, J., Jaroniec, M., Jiang, C. (Eds.). 2020. Surface science of photocatalysis. Academic Press.
- 47. Zewde, D., Geremew, B. 2022. Biosynthesis of ZnO nanoparticles using Hagenia abyssinica leaf extracts; their photocatalytic and antibacterial activities. Environmental pollutants and bioavailability, 34(1), 224–235.
- 48. Zhang, X., Wang, X., Meng, J., Liu, Y., Ren, M., Guo, Y., Yang, Y. 2021. Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants. Separation and Purification Technology, 255, 117693.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7927b0ee-2482-42ef-b191-db19aa9f6426
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.