Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most of the orthodontic archwires used in the clinical practice nowadays contain nickel (Ni), however, many patients, especially kids, are allergic to Ni. One possible Ni-free alternative is the Titanium-Niobium (Ti-Nb) archwire. Unfortunately, there is not enough information about its mechanical properties in the literature, especially after clinical usage. Therefore, the aim of this work was to investigate and compare the mechanical properties, chemical composition, structure and morphology of as received and used in clinical practice Ti-Nb orthodontic archwires. Materials and methods: We investigated and compared as received and clinically retrieved after 4 and 6 weeks respectively Ti-Nb archwires with dimensions 0.43 × 0.64 mm (0.017 in. × 0.025 in.). The following methods were used: instrumented indentation testing (nanoindentation), X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Results: The nanoindentation investigations of as received and used Ti-Nb archwires revealed a decreasing in their indentation hardness with increased periods of use in the patient’s mouth. Moreover, an increasing of the concentration of Ti in the content of the TiNb alloy was associated with an increased period of use in the oral cavity. The SEM analysis showed changes in surface morphology with increasing the period of use of the archwires. Conclusions: The results showed that there are slight changes in the mechanical and physicochemical properties of the investigated wires after their use in the patient’s mouth. That is why we do not recommend them for recycling.
Czasopismo
Rocznik
Tom
Strony
31--39
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
autor
- Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
autor
- Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
autor
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
autor
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
autor
- Institute of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, Estoni
autor
- Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Bibliografia
- [1] ALCOCK J.P., BARBOUR M.E., SANDY J.R., IRELAND A.J., Nanoindentation of orthodontic archwires: The effect of decontamination and clinical use on hardness, elastic modulus and surface roughness, Dent. Mater., 2009, 25, 1039–1043.
- [2] AL-KHATIEEB M., Influence of different recycling protocols on load deflection of nickel titanium orthodontic wire (An in vitro study), J. Bagh. Coll. Dentistry, 2008, 20, 105–110.
- [3] BAI Y.J., WANG Y.B., CHENG Y., DENG F., ZHENG Y.F., WEI S.C., Comparative study on the corrosion behavior of Ti-Nb and TMA alloys for dental application in various artificial solutions, Mater. Sci. Eng. C, 2011, 31, 702–711.
- [4] BAI Y., DENG Y., ZHENG Y., LI Y., ZHANG R., LV Y., ZHAO Q., WEI S., Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus, Mater. Sci. Eng. C, 2016, 59, 565–576.
- [5] BAVIKATI V.N., SINGARAJU G.S., MANDAVA P., KILLAMSETTY S.S., NETTAM V., KARNATI P.K., Evaluation of Mechanical and Physical Properties of Clinically Used and Recycled Superelastic NiTi Wires, J. Clin. Diagn. Res., 2016, 10, ZC35–ZC40.
- [6] DALSTRA M., DENES G., MELSEN B., Titanium-niobium, a new finishing wire alloy, Clin. Orthod. Res., 2000, 3, 6–14.
- [7] GRIMSOTTIR M.R., GJERDET N.R, HENSTEN-PETTERSEN A., Composition and in vitro corrosion of orthodontic appliances, Am. J. Orthod. Dentofacial Orthop., 1992, 101, 525–532.
- [8] HAY J.L., PHARR G.M., Instrumented Indentation Testing, ASM International, 2000.
- [9] HUANG H., WANG C., CHIU S., WANG J., LIAW Y., LEE T., CHEN F., Corrosion behavior of titanium-containing orthodontic archwires in artificial saliva: effects of fluoride ions and plasma immersion ion implantation treatment, J. Dent. Sci., 2005, 24, 134–140.
- [10] IIJIMA M., MUGURUMA T., BRANTLEY W.A., MIZOGUCHI I., Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires, Am. J. Orthod. Dentofacial Orthop., 2011, 140, 65–71.
- [11] IIJIMA M., MUGURUMA T., BRANTLEY W.A., CHOE H., NAKAGAKI S., ALAPATI S.B., MIZOGUCHI I., Effect of coating on properties of esthetic orthodontic nickel-titanium wires, Angle Orthod., 2012, 82, 319–325.
- [12] ILIEVSKA I., KARASHANOVA D., PETRUNOV V., ZALESKI A., DROZD M., MIKLI V., STOYANOVA-IVANOVA A.K., Characterization of titanium–niobium orthodontic archwires used in orthodontic treatment, Bulg, Chem, Commun., 2016, 48 Special Issue G, 183–187.
- [13] ILIEVSKA I., PETROV V., ANDREEVA L., KOVACHEVA D., ZALESKI A., DROZD M., BUKOWSKA E., MIKLI V., STOYANOVA-IVANOVA A., Structural and morphological characterization of heat-activated nickel-titanium archwires, Bulg. Chem. Commun., 2017, 49 Special Issue A, 33–39.
- [14] INSABRALDE N.M., POLETTI T., CONTI A.C., OLTRAMARI-NAVARRO P.V., LOPES M.B., FLORES-MIR C., RODRIGUES DE ALMEIDA M., Comparison of mechanical properties of beta-titanium wires between leveled and unleveled brackets: an in vitro study, Prog. Orthod., 2014, 15, 42.
- [15] ISAK J., MAHEDIRA S., CHANDRASHEKAR B., REDDY V.P., RAMESH KUMAR P.C., SHETTY B.M., Effects of clinical recycling on mechanical properties of three commonly used types of orthodontic archwires, Saudi J. Oral. Dent. Res., 2016, 1, 124–136.
- [16] ISO14577-1, Metallic materials – instrumented indentation test for hardness and materials parameters, International Organization for Standardization, Geneva 2015.
- [17] JANSON G.R., DAINESI E.A., CONSOLARO A., WOODSIDE D.G., DE FREITAS M.R., Nickel hypersensitivity reaction before, during, and after orthodontic therapy, Am. J. Orthod. Dentofacial Orthop., 1998, 113, 655–660.
- [18] JOHNSON E., Relative Stiffness of Beta Titanium Archwires, Angle Orthod., 2003, 73, 259–269.
- [19] KRISHNAN V., KUMAR K.J., Mechanical Properties and Surface Characteristics of Three Archwire Alloys, Angle Orthod., 2004, 74, 825–831.
- [20] KULSHRESTHA R., Recycling of Nickel Titanium Alloy Wires in Orthodontics, Dentistry and Dent. Pract. J., 2019, 2, 180008.
- [21] NAGAI M., TANIMOTO Y., INAMI T.,YAMAGUCHI M., NISHIYAMA N., KASAI K., Effects of Indentation Load on the Mechanical Behavior of Orthodontic Wire Alloys by Dynamic Micro-Indentation Method, Int. J. Oral-Med. Sci., 2013, 12, 41–48.
- [22] OLIVER W., PHARR G., Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res., 2004, 19, 3–20.
- [23] OLIVER W., PHARR G., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7, 1564–1583.
- [24] Ormco products, archwires. http://www.damonsystem.md/ortodontical-arcs-en/, [Accessed on 26.09.2019].
- [25] PETROV V.G., TERZIEVA S.D., TUMBALEV V.G., MIKLI V., ANDREEVA L.S., STOYANOVA-IVANOVA A.K., Influence of the treatment period on the morphology and the chemical composition of the thermally activated orthodontic archwires, Bulg. Chem. Commun., 2015, 47, 234–238.
- [26] THOMPSON A., ATTWOOD D., GULLIKSON E., HOWELLS M., KIM K., KIRZ J., KORTRIGHT J., LINDAU I., LIU Y., PIANETTA P., ROBINSON A., SCOFIELD J., UNDERWOOD J., WILLIAMS G., WINICK H., X-ray Data Booklet, Center for X-Ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, October 2009.
- [27] VERSTRYNGE A., VAN HUMBEECK J., WILLEMS G., In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires, Am. J. Orthod. Dentofacial Orthop., 2006, 130, 460–470.
- [28] ZHANG D.C., MAO I.F., LI Y.L., LI J.J., YUAN M., LIN J.G., Effect of ternary alloying elements on microstructure and superelastictity of Ti–Nb alloys, Mater. Sci. Eng., A. 2013, 559, 706–710.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-792607e8-1353-48f5-bea7-9a8a3aa13dac