Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper delivers a full justification of the Cherkaev–Lurie–Milton theorem in application to the elasticity problem of in-plane loaded plates, 2D periodic elastic composites, elasticity of thin plates subjected to transverse loads as well as in-plane periodic thin plates in bending. The theorem is treated as natural extension of Michell’s result on 2D elasticity and the Gauss–Bonnet formula applied to the deflection surface of a thin plate subject to bending.
Czasopismo
Rocznik
Tom
Strony
319--339
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Warsaw University of Technology, Faculty of Civil Engineering, Armii Ludowej 16, 00-637 Warsaw, Poland
Bibliografia
- 1. J.H. Michell, On the direct determination of stress in an elastic solid, with application to the theory of plates, Proceedings of the London Mathematical Society, 31, 100–124, 1899.
- 2. I.N. Muskhelishvili, Selected Basic Problems of Mathematical Theory of Elasticity, Izdatelstvo Nauka, 5th revised and extended edition, Moskva 1966 (in Russian).
- 3. I. Szabó, Die Geschichte der Plattentheorie. Die Bautechnik, 48, 1–8, 1972.
- 4. A.K. Lurie, A.V. Cherkaev, The effective properties of composite materials and problems of optimal design of structures, Advances in Mechanics (Uspekhi Mekhaniki), 9, 3–81, 1986 (in Russian).
- 5. A. Cherkaev, K. Lurie, G.W. Milton, Invariant properties of the stress in plane elasticity and equivalence classes of composites, Proceedings of the Royal Society of London, A 438, 519–529, 1992.
- 6. M.F. Thorpe, I. Jasiuk, New results in the theory of elasticity for two-dimensional composites, Proceedings of the Royal Society of London, A 438, 531–544, 1992.
- 7. T. Lewinski, Optimum design of elastic moduli for the multiple load problems, Archives of Mechanics, 73, 1–40, 2021.
- 8. G. Duvaut, J.-L. Lions, Les Inequations en Mécanique et en Physique, Dunod, Paris, 1972.
- 9. L.J. Walpole, Fourth-rank tensors of the thirty-two crystal classes: multiplication tables, Proceedings of the Royal Society of London, A 391, 149–179, 1984.
- 10. I. Jasiuk, Stress invariance and exact relations in the mechanics of composite materials: Extensions of the CLM result-A review, Mechanics of Materials, 41, 394–404, 2009.
- 11. T. Lewinski, J.J. Telega, Plates, Laminates and Shells. Asymptotic Analysis and Homogenization, World Scientific, Singapore, New Jersey, London, Hong Kong, 2000.
- 12. P. Suquet, Une méthode duale en homogénéisation: Application aux milieux élastiques, Journal de Mécanique Théorique et Appliquée, Numéro spécial 79–98, 1982.
- 13. T. Lewinski, Two versions of Wozniak’s continuum model of hexagonal-type grid plates, Theoretical and Applied Mechanics, 22, 389–405, 1984.
- 14. T. Łukasiak, Two-phase isotropic composites with prescribed bulk and shear moduli, in: Recent Advances in Computational Mechanics (T. Łodygowski, J. Rakowski, P. Litewka, Eds.), CRC Press, Taylor&Francis Group, London, pp. 213–222, 2014.
- 15. S. Czarnecki, T. Łukasiak, T. Lewinski, The Isotropic and Cubic Material Designs. Recovery of the Underlying Microstructures Appearing in the Least Compliant Continuum Bodies, Materials, 10, 1137, 2017.
- 16. B. Budiansky, J.L. Sanders, On the “best” first-order theory of thin elastic shells, in: Progress in Solid Mechanics, The Prager Anniversary Volume, The Macmillan Co., New York, pp. 129–140, 1963.
- 17. A.V. Cherkaev, Variational Methods for Structural Optimization, New York, Springer, 2000.
- 18. G.W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, 2002. On Cherkaev–Lurie–Milton theorem. . . 339
- 19. A. Cherkaev, G. Dzierzanowski, Three-phase plane composites of minimal elastic stress energy: high porosity structures, International Journal of Solids and Structures, 50, 4145–4160, 2013.
- 20. G. Dzierzanowski, Stress energy minimization as a tool in the material layout design of shallow shells, International Journal of Solids and Structures, 49, 1343–1354, 2012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79238b68-b257-4d8d-a0e6-e9131271564e