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1. Introduction

The essential feature of the linear theory of structures con-
structed of Bernoulli–Euler or Timoshenko bars is the existence of a subclass
of systems of bars, called statically determinate structures, in which the set of
statically admissible internal force fields (i.e. axial forces, bending and torsional
moments) is a singleton. Consequently, if the structure is not subject to a static
load, then all the internal forces vanish. Moreover, the diagrams of the internal
forces are independent of the distribution of stiffnesses along the axes of the bars.

Among the 2D linear elasticity problems only one: the pure torsion of an
annular plate is statically determinate: the shear stress can be computed directly
from one equilibrium equation. This shear stress is obviously independent of
the elastic moduli. Only in this simple problem the set of statically admissible
stresses is a singleton. Despite this fact there is well known a broad class of 2D
static problems of elasticity of materially homogeneous isotropic plates (loaded
in the plane), discovered by Michell [1], in which the stress fields do not depend
on the elastic moduli. To make a stress field independent of the elastic moduli
the contours of an in-plane loaded, possibly multi-connected, plate should be
free of kinematic conditions, while the traction load, apart from three required
self-equilibrium conditions, should give zero resultants along the contours of each
opening. In case of 2D simply connected domains the stress is independent of
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the elastic moduli, if the whole contour is subject to (self-equilibrated) tractions.
A very clear proof of the Michell theorem can be found in Muskhelishvili [2].

Similar theorems concern isotropic and homogeneous thin plates in bend-
ing, where the role of the stress fields is played by the measures of changes of
curvature, determined by the deflection function w. If Ω is the middle plane of
the plate, its bending stiffness is denoted by D and ν is Poisson’s ratio, the
expression

(1.1) Π(w) =
1

2

∫
Ω

D
[
(∆w)2 − 2(1− ν) det(∇∇w)

]
dx

represents the elastic energy due to bending within the linear theory of Kirchhoff.
Let the plate be subject to the distributed transverse load of intensity q. Then
the plate deflection w is the minimizer of the problem

(1.2) min
v∈V (Ω)

{
Π(v)−

∫
Ω

qv dx

}
,

V (Ω) being the linear affine set of kinematically admissible deflections. Local-
ization of (1.2) leads to the governing equation:

(1.3) D∆2w = q.

The Gauss curvature of the surface formed by the deformed plate is expressed
by

(1.4) K =
det(∇∇w)

[1 + ‖∇w‖2]2
.

According to the Gauss–Bonnet theorem the integral of K over the surface is
expressed, up to a constant, by the contour integral of the geodesic curvature,
see Szabó [3]. In case of the gradients of w(x) being small with respect to 1 the
numerator of (1.4) represents the first order approximation of K, hence the term
underlined in (1.1) can be reduced to the contour integral and should not affect
the form of the local equation (1.3). This suggests (yet the proof is still needed)
that the deflection of an isotropic and homogeneous plate, fully clamped along
its contour, does not depend on the Poisson ratio.

The historically first derivation of the governing equation (1.3) is attributed
to S. Germain (and, sometimes, to J. L. Lagrange who corrected mistakes in
S. Germain’s derivation). Yet let us stress that this original derivation started
from the formulations (1.1), (1.2) with the underlined term in (1.1) being omit-
ted. Knowing that an untruth can imply a truth, there is no contradiction here,
yet the history of the thin plate theory could have been less quixotic. Eventu-
ally, the correct and complete linear theory of thin plates in bending has been
constructed by G. Kirchhoff, see Szabó [3].
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The two theorems known from 19th century:

– theorem by Michell [1] on the conditions assuring the stress state within
an in-plane loaded isotropic and homogeneous plate being independent of the
elastic moduli,

– the mentioned theorem concerning the conditions of the deflection of a thin
isotropic plate in bending being independent of Poisson’s ratio,

have been extended in the 1980’s to the theory of composites, see the review
paper by Lurie and Cherkaev [4]. It has occurred that the effective moduli of
periodic composites are independent of certain uniform translation of flexibilities
of the constituents. This stability result is known as the Cherkaev–Lurie–Milton
theorem, presented in its final form in the papers by Cherkaev et al. [5] and
Thorpe and Jasiuk [6], both published in the same volume of the Proceedings
of the Royal Society of London. The aim of the present paper is to deliver the
full documentation of this theorem in its four areas of application:

• static problems of in-plane loaded thin plates,
• homogenization of flexibilities of in-plane loaded planar composites,
• static problems of transversely loaded thin plates,
• homogenization of bending stiffnesses of transversely loaded thin plates.

The proofs of these theorems are scattered in the literature, hence it is thought
appropriate to gather the material in the form of one publication.

The present paper does not deal with the regularity problems, hence the
operations inf and sup do not appear.

We shall make use of the notation introduced in paper [7]. In particular, the
Cartesian basis vectors will be denoted by: ei, i = 1, 2; ei ·ej = δij , where · is the
scalar product in R2. The Euclidean norm of p ∈ R2 is defined by ‖p‖ =

√
p · p.

The set of second rank symmetric tensors is denoted by E2
s . The identity tensor

in E2
s is I = δijei⊗ej ; repetition of indices implies summation. The set of fourth

rank tensors C = Cijklei ⊗ ej ⊗ ek ⊗ el satisfying the symmetry conditions
Cijkl = Cklij , Cijkl = Cjikl is denoted by E4

s . The components of the identity
tensor in E4

s read (II)ijkl = 1
2(δikδjl + δilδjk). The product of A,B ∈ E4

s is
defined by the rule: (AB)ijkl = AijmnBmnkl. The scalar product of σ, ε ∈ E2

s is
defined by: σ · ε = σijεij . The Euclidean norm of σ ∈ E2

s reads ‖σ‖ =
√
σ · σ.

Let us define

(1.5)

Trσ =
1√
2

(σ11 + σ22),

devσ = σ−
(

1√
2

Trσ

)
I,

detσ = σ11σ22 − (σ12)2.
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The norm of the deviator equals

(1.6) ‖ devσ‖ =

√
1

2
(σ11 − σ22)2 + 2(σ12)2.

A comma implies differentiation with respect to a Cartesian coordinate: (.),i =
∂(.)/∂xi or (.),i = ∂(.)/∂yi, depending on the context.

2. The 2D elasticity problem with natural boundary conditions.
The stress-based approach

Assume that the 2D body occupies a multi-connected domain Ω whose exter-
nal contour Γ0 as well as the internal contours Γ1, . . . ,Γn are subject to tractions
of intensity T = (T1, T2). The body forces are omitted. Let Γ be the sum of the
contours Γi, i = 0, . . . , n; each contour being parameterized by the natural pa-
rameter si, n = (n1, n2) is the unit vector outward normal to the contour Γ, cf.
Muskhelishvili [2]. The tractions are subject to the conditions∫

Γi

T1 dsi = 0,

∫
Γi

T2 dsi = 0, i = 0, . . . , n,(2.1)

n∑
i=0

∫
Γi

(x1T2 − x2T1) dsi = 0.(2.2)

Thus, the load T is self-equilibrated, gives zero resultants on the each contour,
but does not need to produce zero moments along the contours Γ1, . . . ,Γn. The
conditions (2.1), (2.2) are stronger than usual conditions of the tractions being
self-equilibrated. The domain Ω is parameterized by the Cartesian orthogonal
system x1, x2.

We say that the test stress field τ = (τij) in Ω, locally in E2
s , satisfying

– the local equilibrium equations

(2.3) τij ,j = 0 in Ω,

– the natural boundary conditions

(2.4) τijni = Tj in Γ

is statically admissible. Such test stress fields form the linear affine set ΣT (Ω).
Now, we shall determine the stress field σ which arises in the body loaded by

the given tractions. Let c(x) be the tensor of elastic flexibilities and c−1(x) = C(x)
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be the tensor of elastic moduli, both of the class E4
s and both positive definite.

The energy density corresponding to the test stress field τ is given by

(2.5) W (τ(x)) = 1
2τ(x) · (c(x)τ(x)).

According to Castigliano’s theorem, see Duvaut and Lions [8, Sec. 3.5], the
stress field σ arising in the body is the minimizer of the variational problem

(2.6) min
τ∈ΣT (Ω)

=(τ) = =(σ),

where

(2.7) =(τ) =

∫
Ω

W (τ(x)) dx

and the minimizer is unique, provided that the conditions (2.1)–(2.2) are fulfilled.
We remember that the conditions (2.1) are here too strong, but their form is
necessary in the sequel. If σ solves (2.6) then there exists a displacement field
u = (u1, u2) such that

(2.8) c(x)σ(x) = ε(u(x)) in Ω,

where ε(u) = (εij(u)) is the strain tensor. The components of strain satisfy the
following compatibility equation

(2.9) ε11,22 + ε22,11 − 2ε12,12 = 0.

Recovery of the displacements is possible by appropriate integration of strains.
To each stress field τ ∈ ΣT (Ω) one can assign an Airy stress function F such

that

(2.10) τ11 = F,22 τ22 = F,11 τ12 = −F,12

locally within Ω, and

(2.11)
∂

∂s
(F,2) = T1,

∂

∂s
(F,1) = −T2 on Γ,

see [2, Eqs. (3), Sec. 32, p. 111]. Integration of (2.11) introduces constants, in-
dependent for each opening, hence

(2.12) F,1 = −
si∫

0

T2 dsi + Ci, F,2 =

si∫
0

T1 dsi +Di, i = 0, . . . , n,

where si is the natural parameter along the i-th contour.
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Let

(2.13) Ji =

∫
Γi

∇F ·T dsi

and

(2.14) R
(1)
i =

si∫
0

T1 dsi, R
(2)
i = −

si∫
0

T2dsi.

Substitution of (2.14) into (2.7) makes it possible to rewrite (2.3) in the form

(2.15) Ji =

∫
Γi

(R
(i)
2 T1 +R

(i)
1 T2) dsi + Ci

∫
Γi

T1 dsi +Di

∫
Γi

T2 dsi.

By virtue of the assumptions (2.1) the above integrals reduce to

(2.16) Ji =

∫
Γi

(R
(i)
2 T1 +R

(i)
1 T2) dsi,

which reveals that Ji, i = 0, . . . , n, do not depend on the function F , hence Ji
are determined only by the geometry of the domain Ω and the distribution of
the traction load along the contours; thus, we shall write: Ji = Ji(T).

Consider now the case of isotropy. The Hooke tensor is represented by Hill’s
formula

(2.17) C = 2k (x) Λ1 + 2µ(x)Λ2,

where

(2.18) (Λ1)ijkl = 1
2δijδkl, (Λ2)ijkl = (II)ijkl − (Λ1)ijkl.

The tensors Λ1, Λ2 have the properties of projectors, see Walpole [9]

(2.19) Λ1Λ1 = Λ1, Λ1Λ2 = 0, Λ2Λ2 = Λ2.

Thus, the decomposition (2.17) of Hooke tensors of isotropic materials comprises
two tensors being mutually orthogonal. In 2D elasticity the bulk and shear mod-
uli: (k, µ) are linked with the 2D Young modulus E and with the Poisson ratio ν
by

(2.20) k =
E

2(1− ν)
, µ =

E

2(1 + ν)
.

Tensor C is positive definite if k > 0 and µ > 0. The tensor c inverse to C is
represented by

(2.21) c =
1

2k(x)
Λ1 +

1

2µ(x)
Λ2.
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Let us note, that for the test stress τ ∈ E2
s we have

(2.22) τ · (Λ1τ) = (Trτ)2, τ · (Λ2τ) = ‖ dev τ‖2.

Thus, the elastic energy stored in an in-plane loaded plate is expressed by the
formula

(2.23) =(τ) =
1

2

∫
Ω

1

E

[
(τ11 + τ22)2 − 2(1 + ν)(τ11τ22 − (τ12)2)

]
dx.

Cherkaev, Lurie and Milton [5] noted that the term underlined in (2.23)
can be interpreted as a result of translation of the values of all the components
of flexibilities of the in-plane loaded plate by a certain homogenous isotropic
tensor. Indeed, let us define the translation operator using the projectors (2.18)
by

(2.24) Lλ =
1

2λ
L, L = Λ1 −Λ2,

where λ is a constant; here 1/λ has the dimension of the flexibility of the plate
loaded in plane. Due to (2.22)

(2.25) τ · (Lλτ) =
1

2λ

[
(Trτ)2 − ‖dev τ‖2]

or

(2.26) τ · (Lλτ) =
1

λ
detτ.

The formula (2.26) reveals the main idea of introducing the translator (2.24).
Note that each σ ∈ E2

s can be decomposed into two mutually orthogonal
components by the rule: σ = Λ1σ + Λ2σ. By treating σ as a vector in R3

according to Bechterew’s concept, see Lewiński [7], and by reflecting it with
respect to the axis determined by Λ1σ, we obtain σ̆ = Λ1σ−Λ2σ or σ̆ = Lσ. In
general, the vectors σ and σ̆ are non-orthogonal. On the other hand, σ̆11 = σ22,
σ̆22 = σ11, σ̆12 = −σ12, which means that tensor σ̆ is the image of tensor σ by
rotation of the Cartesian frame by a right angle, see [5].

3. The CLM theorem in its first version

This section concerns static problems of in-plane loaded plates subject to
tractions, as described in Section 2. Let us stress: no kinematic boundary condi-
tions are imposed and the additional conditions (2.1) on the traction distribution
are assumed.
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The first version of the CLM theorem says that the perturbation (translation)
of the flexibilities by the tensor (2.24) does not change the state of stress within
the 2D body considered, provided that the conditions (2.1), (2.2) are fulfilled and
the translated elastic moduli tensor remains positive definite. This introduces
some bounds on the translation parameter λ. In this form the CLM theorem has
been put forward by Jasiuk [10], while in the original paper [5] the assumptions
(2.1) have been unnecessarily augmented with the requirement that each integral
under the sign of the sum in (2.2) vanishes.

3.1. Case of general anisotropy

Consider a 2D body occupying the domain Ω and subjected to the tractions
satisfying (2.1), (2.2). The flexibilities of the body are translated by tensor Lλ,
see (2.24), i.e.

(3.1) c̄ijkl = cijkl + (Lλ)ijkl.

The density of energy equals now

(3.2) W̄ (τ(x)) =
1

2
τ(x) · (c̄(x)τ(x))

and, due to (2.26)

(3.3) W̄ (τ) = W (τ) +
1

2λ
detτ.

The determinant detτ can be expressed by using the Airy stress function:

(3.4) 2 detτ = F,11F,22 − F,12F,21 + F,22F,11 − F,21F,12.

By using the identities

(3.5)

F,11F,22 = (F,11F,2),2−F,112F,2 ,

F,12F,21 = (F,12F,2),1−F,121F,2 ,

F,22F,11 = (F,22F,1),1−F,221F,1 ,

F,21F,12 = (F,21F,1),2−F,122F,1 ,

we find

(3.6) 2 detτ = (F,11F,2),2−(F,12F,2),1 +(F,22F,1),1−(F,21F,1),2 ,
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hence

2

∫
Ω

detτ dx =

∫
Γ

[
F,2 (F,11n2 − F,12n1) + F,1 (F,22n1 − F,12n2)

]
ds(3.7)

=

∫
Γ

[
F,2 (τ22n2 + τ21n1) + F,1 (τ11n1 + τ12n2)

]
ds

=

∫
Γ

[
F,2 T2 + F,1 T1

]
ds =

n∑
i=0

∫
Γi

∇F ·Tdsi

and, finally

(3.8) 2

∫
Ω

detτ dx =

n∑
i=0

Ji(T)

because, as proved in Section 2, the integrals Ji given by (2.13) do not depend
on the function F , hence Ji depend only on the geometry of the domain Ω and
on the traction distribution. Let us come back to (3.3). Integration gives

(3.9)
∫
Ω

W̄ (τ) dx =

∫
Ω

W (τ) dx+
1

4λ

n∑
i=0

Ji(T).

Let

(3.10) =̄(τ) =

∫
Ω

W̄ (τ(x)) dx

and let the field σ̄ be the stress field arising in the body with the translated
flexibilities (3.1). Such a stress field solves the problem:

(3.11) =̄(σ̄) = min
τ∈ΣT (Ω)

∫
Ω

W̄ (τ) dx

or

(3.12) =̄(σ̄) = min
τ∈ΣT (Ω)

∫
Ω

W (τ) dx+
1

4λ

n∑
i=0

Ji(T).

Consequently,

(3.13) =̄(σ̄) = =(σ) +
1

4λ

n∑
i=0

Ji(T)
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and σ̄ = σ, since the minimization operation in (3.12) gives a unique result.
Thus, we conclude that the stress field which appears in the body of flexibilities
c̄ijkl coincides with the stress field arising in the body with flexibilities cijkl. In
particular, the constant λ does not affect the stress field. The mentioned identity
of the stress fields is conditioned by the lower and upper bounds to be imposed
on the value of the constant λ to assure positive definiteness of the flexibility
tensor (3.1).

3.2. Case of isotropy. J.H. Michell’s theorem

Consider now the isotropy case to reveal the range of admissible values of
the constant λ. Let tensor C(x) be represented by (2.17) with positive bulk and
shear moduli. Then, the tensor of flexibilities c(x) has the form (2.21) while the
translated flexibility tensor is, according to (3.1), (2.24), given by

(3.14) c̄ =
1

2k̄(x)
Λ1 +

1

2µ̄(x)
Λ2,

where

(3.15)
1

k̄(x)
=

1

k(x)
+

1

λ
,

1

µ̄(x)
=

1

µ(x)
− 1

λ
.

The constant λ satisfies the bounds

(3.16) − 1

k(x)
<

1

λ
<

1

µ(x)
∀x ∈ Ω.

Thus, the stress fields arising in the 2D bodies of moduli k̄(x), µ̄(x) given by
(3.15), with the conditions (3.16) fulfilled, are not affected by the value of the
constant λ.

The theorem by Michell [1] holds: the stress field does not depend on the
values of both the moduli of isotropy, if they are constant within the domain Ω.
Indeed, the functional W̄ (τ) has the form

(3.17) W̄ (τ) =
1

E
(Trτ)2 +

(
1

2λ
− 1

2µ

)
detτ,

where Young’s modulus E is the harmonic mean of 2k, 2µ, or

(3.18)
1

E
=

1

4k
+

1

4µ
,

see (2.20). If both the moduli k and µ are constant, then the minimizer of (3.11)
coincides with the minimizer of the problem

(3.19) min
τ∈ΣT (Ω)

∫
Ω

(Trτ)2 dx,
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which does not involve any moduli. This is true only if the traction load sat-
isfies the conditions (2.1)–(2.2). Let us remind that if the domain Ω is simply
connected, these conditions reduce to the inevitable conditions of the load being
self-equilibrated.

4. The CLM theorem in its second version

The second version of the CLM theorem concerns the theory of homogeniza-
tion of moduli in the 2D elasticity. In the basic cell problem (the basic cell being
the rectangular domain Ω = Y = (0, l1) × (0, l2)) the boundary load assumes
opposite values on the opposite sides of the cell. In this version the CLM theorem
says that the translation of the flexibilities by tensor (2.24) results in the same
translation of the effective flexibilities, see [5]. In this problem the assumptions
(2.1) for i ≥ 1 are identically fulfilled, since in the basic cell problem the internal
contours of the basic cell are free of loads.

4.1. Case of arbitrary anisotropy of the basic cell

The CLM theorem plays an essential role in the theory of homogenization of
Y -periodic media. A complete proof of this theorem is not easy available. It is
reported here for the reader’s convenience.

In the stress-based theory of homogenization the test stress fields within the
basic cell are subject to the following conditions:

(4.1)
τij ,j = 0 in Y, ( ),i = ∂( )/∂yi,

τijni assume opposite values at opposite sides of Y ,
τijni = 0 along the contours of openings within Y.

Here n = (n1, n2) is the unit vector outward normal to the contour of Y .
Such fields form the set Σper(Y ). In the theory of homogenization the follow-

ing equality is proved:

(4.2) 〈τ · (Lτ)〉 = 〈τ〉 · (L〈τ〉) ∀τ ∈ Σper(Y ),

where tensor L is given by (2.24) and 〈·〉 is the averaging operation over the
cell Y, or

(4.3) 〈f〉 =
1

|Y |

∫
Y

f dy, |Y | = l1l2, dy = dy1 dy2.

The equality (4.2) looks like an algebraic formula, but its simplicity is misleading;
in the process of proving (4.2) the differential equilibrium equations (4.1)1 play
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a crucial role; for the complete proof the reader is referred to Sec. 21.4.5 in
Lewiński and Telega [11].

The effective flexibilities chijkl of a Y -periodic composite of local flexibilities
cijkl(y) are given by the formula of Suquet [12]:

(4.4) σ̂ · (chσ̂) = min{〈τ · (cτ)〉 | τ ∈ Σper(Y ), 〈τ〉 = σ̂},

where σ̂ is an arbitrary tensor from E2
s , cf. [11, Sec. 3.6]. In a similar manner

one can compute the effective flexibilities c̄hijkl of the Y -periodic composite of
flexibilities given by (3.1):

(4.5) σ̂ · (c̄hσ̂) = min{〈τ · (c̄τ)〉 | τ ∈ Σper(Y ), 〈τ〉 = σ̂}.

Substitution of (3.1) and taking into account (4.2) results in the formula:

(4.6) σ̂ · (c̄hσ̂) = σ̂ · (chσ̂) + σ̂ · (Lλσ̂)

which, due to arbitrariness of σ̂, implies the translation rule

(4.7) c̄h = ch + Lλ,

similar to the translation rule (3.1). Moreover, it occurs that the minimizer of
the problem (4.4) coincides with the minimizer of the problem (4.5). The stress
fields within the basic cell arising in both the composites of different flexibilities
are the same.

We have assumed for simplicity that the underlying Y -periodic microstruc-
ture is uniform, i.e. x-independent. However, the homogenization result (4.4)
extends to the non-uniform case; then the homogenized moduli vary within the
domain Ω.

4.2. The case of composites of isotropic effective properties

Despite local anisotropy of properties of the basic cell the effective properties
of the composite may be isotropic. For example, rotational symmetry with re-
spect to three-fold rotation by 120◦ implies effective isotropy, see Lewiński [13],
Łukasiak [14] and Czarnecki et al. [15]. Then the tensor of effective flexibili-
ties is represented by

(4.8) ch =
1

2kh
Λ1 +

1

2µh
Λ2

and according to (4.7), the tensor of effective flexibilities of the composite with
translated values is given by

(4.9) c̄h =
1

2k̄h
Λ1 +

1

2µ̄h
Λ2,
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where

(4.10)
1

2k̄h
=

1

2kh
+

1

2λ
,

1

2µ̄h
=

1

2µh
− 1

2λ
.

Thus,

(4.11)
1

k̄h
+

1

µ̄h
=

1

kh
+

1

µh
.

Within the 2D setting the Young moduli are defined by

(4.12)
4

Eh
=

1

kh
+

1

µh
,

4

Ēh
=

1

k̄h
+

1

µ̄h
,

hence Eh = Ēh. Thus, the translation of flexibilities (3.1) does not affect the
value of Young’s modulus. It has an influence on the value of Poisson’s ratio.

4.3. Case of a porous isotropic composite

Let us remind the known fact of the theory of homogenization of porous
composites, see [10]. Assume that we have two isotropic porous media whose 2D
Young moduli and Poisson ratios are: a) E, ν, b) E, ν̄ and ν̄ 6= ν. Assume that
their effective properties are isotropic and are expressed by the moduli: a) Eh,
νh, b) Ēh, ν̄h. It occurs that the effective Young moduli coincide: Ēh = Eh. To
prove this equality let us assume that the constant of translation (2.24) equals

(4.13) λ =
E

2(ν − ν̄)
.

The bulk and shear moduli of both the materials are:

k =
E

2(1− ν)
, µ =

E

2(1 + ν)
,(4.14)

k̄ =
E

2(1− ν̄)
, µ̄ =

E

2(1 + ν̄)
.(4.15)

Hence

(4.16)
1

k̄
− 1

k
=

1

λ
,

1

µ̄
− 1

µ
= − 1

λ
,

where λ is given by (4.13). Thus, the tensors c and c̄ are linked by Eq. (3.1),
where Lλ is defined by (2.24), (4.13). According to (4.7), and, consequently,
according to (4.10)–(4.12) we arrive at Ēh = Eh, see [10, Sec. 5.1]. The above
result paves the way towards a less obvious property of porous composites of
isotropic effective layout of the moduli: the effective Young modulus of such
composites does not dependent on the value of Poisson’s ratio; for the proof see
[5, Sec. 4] and [10, Sec. 5].
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5. Extension of the CLM theorem to the thin plate bending problem

5.1. The static problem of a thin plate in bending, whose contour is fully clamped
and subject to nonhomogeneous kinematic boundary conditions

Consider the problem of statics of an anisotropic thin elastic plate subject
to a transverse load; the plate middle plane occupies a plane domain Ω whose
contour Γ is composed of the external contour Γ0 and the internal contours
Γ1, . . . ,Γn of openings. The Kirchhoff theory of thin plates is applied. All the
contours are clamped; the kinematic boundary conditions are assumed as inho-
mogeneous, namely:

(5.1) w|∂Ω = w0(s),
∂w

∂n
|∂Ω = β0(s) along Γ,

where n = (n1, n2)is the unit vector outward normal to the contour Γ; the unit
vector tangent to the contour is denoted by t = (t1, t2), t1 = −n2, t2 = n1. Thus,
we have

(5.2)
∂f

∂t
= f,1 t1 + f,2 t2 = −f,1 n2 + f,2 n1.

The functions w0(s), β0(s) determine the first derivatives of w along the con-
tour Γ:

(5.3)
w,1 = w,nn1 + w,tt1 = β0(s)n1 +

dw0

ds
(−n2),

w,2 = w,nn2 + w,tt2 = β0(s)n2 +
dw0

ds
(n1).

Thus, ∇w is an a priori known function along the whole contour of the plate.
Let us compute

(5.4)

∂(w,1)

∂s
= w,11t1 + w,12t2 = −(w,11n2 − w,12n1)

df
= −ϕ2(s),

∂(w,2)

∂s
= w,21t1 + w,22t2 = −w,21n2 + w,22n1

df
= ϕ1(s).

Thus, the functions ϕ1(s), ϕ2(s) are determined by the functions w0(s), β0(s)
given along the contour Γ.

The kinematically admissible deflections should be appropriately regular
within the domain Ω and should satisfy the boundary conditions (5.1). The
set of such deflections has been denoted by V (Ω), see Section 1.

The plate is subject to the transverse load of intensity q(x). The bending
stiffnesses Dijkl form the tensor field D in the domain Ω, locally of the class
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E4
s and positive definite. The measures of bending are defined by κ11 = −w,11,

κ22 = −w,22, κ12 = κ21 = −w,12. The bending moments are linked with the
transverse load by the equilibrium equation

(5.5) M11,11 +M22,22 + 2M12,12 + q = 0,

while the bending measures satisfy the compatibility equations:

(5.6) κ22,1−κ12,2 = 0, −κ12,1 +κ11,2 = 0.

The deflection w = w(x) is the minimizer of the problem (1.2), where now

(5.7) Π(v) =
1

2

∫
Ω

κ(v) · (Dκ(v)) dx

and here the notation: κ(v) = (κij(v) = −v,ij) is used. This problem is well
posed, (see [8, Ch. IV]).

In case of isotropy the bending moments Mijare linked with the measures of
bending by

(5.8) M11 = D(κ11 + νκ22), M22 = D(νκ11 + κ22), M12 = D(1− ν)κ12,

D is treated as independent of ν. The energy stored in the thin isotropic plate
is expressed by the functional whose argument is the plate deflection:

(5.9) Π(w) =
1

2

∫
Ω

D
[
(κ11(w))2 + 2νκ11(w)κ22(w)

+ (κ22(w))2 + 2(1− ν)(κ12(w))2
]
dx.

The formula above can be re-written in the form

(5.10) Π(w) =
1

2

∫
Ω

D
[
(κ11(w) + κ22(w))2

− 2(1− ν)(κ11(w)κ22(w)− (κ12(w))2)
]
dx

equivalent to (1.1).

The static-geometric analogy

The static-geometric analogy concerns the system of equations of both the
static problems of: in-plane loaded and transversely loaded plates. Let us note that
by replacing (σ11, σ22, σ12) with (κ22, κ11,−κ12) and by replacing (ε11, ε22, ε12)
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with (M22,M11,−M12) one rearranges: Eqs. (2.3) (written in terms of σ11, σ22, σ12

components), and (2.9) to the form of Eqs. (5.6), (5.5), if q = 0. Thus, the equi-
librium equations of the in-plane loaded plate assume the form of the compat-
ibility equations for bending measures, while the compatibility equation of the
in-plane loaded plate assumes the form of the equilibrium equation of the bend-
ing plate, if q = 0. Moreover, the expressions for the elastic energies: (2.23) and
(5.10) are similar. To make them identical one should replace (σ11, σ22, σ12) with
(κ22, κ11,−κ12) and then replace (ν,E) with (−ν, 1/D), respectively. Moreover,
by expressing the stresses by using the Airy function F , see (2.10), we rearrange
the formula (2.23) to the form (1.1). This analogy clears up why the CLM the-
orem applies to controlling: the flexibilities of in-plane plates and – the bending
stiffnesses of transversely loaded plates.

It is remarkable and surprising that the static-geometric analogy takes place
in some selected theories of thin elastic shells, as discovered by A. L. Goldenveizer
in 1940’s. The class of such theories has been identified in Budiansky and
Sanders [16].

5.2. The CLM theorem in its first version

Consider now the plate of the same shape and loaded the same way but of
different stiffnesses, translated according to the rule:

(5.11) D̄(x) = D(x) + Lλ,

where Lλ is given by (2.24), yet note that now the modulus 1/λ has the dimension
of a bending stiffness. By analogy with (3.3) we find

(5.12)
1

2
κ · (D̄κ) =

1

2
κ · (Dκ) +

1

2λ
detκ,

where now, see (3.4),

(5.13) 2 detκ = w,11w,22 − w,12w,21 + w,22w,11 − w,21w,12.

By virtue of the analogy between (3.4) and (5.13) we find

(5.14) 2

∫
Ω

detκ dx =

∫
Γ

[
w,2 (w,11n2 − w,12n1) + w,1 (w,22n1 − w,12n2)

]
ds

and, using (5.4) we reduce the integral as follows

2

∫
Ω

detκ dx =

∫
Γ

[
w,2

(
− ∂

∂s
(w,1 )

)
+ w,1

(
∂

∂s
(w,2 )

)]
ds(5.15)

=

∫
Γ

∇w ·ϕ ds,
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where both: ∇w and ϕ are determined by the functions w0(s), β0(s) given along
the contour. This confirms the conjecture noted in Section 1: 1

2∇w · ϕ can be
viewed as approximation of the geodesic curvature of the contour of the defor-
mation surface.

The deflection of the plate of stiffnesses D̄ijkl is the minimizer of the problem

(5.16) min
v∈V (Ω)

{
Π̄(v)−

∫
Ω

qv dx

}

with

(5.17) Π̄(v) = Π(v) +
1

4λ

∫
Γ

∇v ·ϕ ds,

where the underlined term is determined only by the functions w0(s), β0(s) given
along the contour. We conclude that the minimizers of both the problems (1.2),
(5.7) and (5.16) are the same: w̄ = w. Consequently, the bending deformation
measures coincide. The bending moments are different:

(5.18)
M = Dκ(w),

M̄ = M +
1

2λ
(Λ1 −Λ2)κ(w).

5.3. Homogenization of stiffnesses of thin elastic Y -periodic plates in bending

5.3.1. Translation of the bending flexibilities. Consider a thin elastic Y -periodic
plate, i.e. of Y -periodically varying flexibilities dijkl(y). The test bending moment
fields mij(y) within the basic cell satisfy the conditions, see [11, Sec. 3.6]:

(5.19)

mij,ij = 0 in Y, here (.),i = ∂(.)/∂yi,
mn = mijninj assume the same values at the opposite sides of Y ,

qn = nimij ,j +
∂

∂s
(mijnitj)

assume opposite values at the opposite sides of Y .

Here the vector t is a unit vector tangent to the contour ∂Y . Such fields mij(y)
form the set Sper(Y ). The effective flexibilities dhijkl of the plate are given by the
variational formula

(5.20) M · (dhM) = min
{
〈m · (dm)〉 |m ∈ Sper(Y ), 〈m〉 = M

}
,

see [11, Eq. (3.6.7) in Sec. 3.6].
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If m = (mij) ∈ Sper(Y ) then

(5.21) 〈m · (Lm)〉 ≤ 〈m〉 · (L〈m〉)

see [11, Eq. (21.4.13)].
Along with the problem (5.20) concerning plates of flexibilities dijkl(y) let us

consider the plate of the same shape, equally loaded, of flexibilities translated
by the rule (3.1), or

(5.22) d̄h = dh + Lλ.

Thus, by (2.26) we compute

m · (d̄m) = m · (dm) + m · (Lλm) = m · (dm) +
1

2λ
m · (Lm)(5.23)

= m · (dm) +
1

λ
det m.

If λ > 0, by virtue of (5.21), we have

(5.24) 〈m · (d̄m)〉 ≤ 〈m · (dm)〉+
1

2λ
〈m〉 · (L〈m〉).

Thus

(5.25) M · (d̄hM) ≤M · (dhM) + M · (LλM) ∀M ∈ E2
s

or tensor d̄h − dh − Lλ is negative definite; there is no argument to claim that
d̄h = dh + Lλ.

5.3.2. Translation of the bending stiffness tensor. Let D = d−1 be a Y -periodic
tensor of stiffnesses of a thin plate. We consider the plate of the same shape,
equally loaded, of Y -periodic stiffnesses given by the translation rule:

(5.26) D̄ = D + Lλ.

The effective bending stiffnesses of the Y -periodic plate of stiffnesses Dijkl are
determined by the variational formula, see [11, Eq. (3.4.10)]:

(5.27) k · (Dhk) = min
{
〈κ · (Dκ)〉 | κ ∈ Kper(Y ), 〈κ〉 = k

}
∀k ∈ E2

s ,

where the set Kper(Y ) is composed of kinematically admissible bending de-
formation measures κij satisfying the compatibility equation (5.6), where now
∂(.)/∂yi = (.),i; these bending measures are associated with Y -periodic deflec-
tions of the basic cell. The equality

(5.28) 〈detκ〉 = det〈κ〉 ∀κ ∈ Kper(Y )
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(see [11, Eq. (21.4.4)) implies the rule:

(5.29) 〈κ · (Lκ)〉 = 〈κ〉 · (L〈κ〉)∀κ ∈ Kper(Y ).

It is worth noting that this formula has the same form as Eq. (4.2) concerning
the theory of in-plane loaded plates.

The effective stiffnesses D̄h
ijklof the plate of Y -periodic stiffnesses D̄ijkl given

by (5.26) are determined by the formula (5.27) or

(5.30) k · (D̄hk) = min
{
〈κ · (D̄κ)〉 | κ ∈ Kper(Y ), 〈κ〉 = k

}
∀k ∈ E2

s .

Substitution of (5.26), taking into account (5.29), gives

(5.31) k · (D̄hk) = k · (Dhk) + k · (Lλk) ∀k ∈ E2
s ,

hence

(5.32) D̄h = Dh + Lλ.

We conclude that the above translation of the effective bending stiffnesses is
compatible with the point-wise translation (5.26) of the local bending stiffnesses.

6. Final remarks

The Cherkaev–Lurie–Milton theorem applies both to the theory of in-plane
loaded plates and transversely loaded plates, which can be justified by the
static-geometric analogy. From the mathematical viewpoint the Cherkaev–Lurie–
Milton theorem may be treated as a by-product of the theory of null-lagrangians,
see Cherkaev [17]. On the other hand, its role in the theory of composites
is so strong and treated as obvious that the proof of this theorem is usually
omitted, overshadowed by the closely related problems of bounding the moduli,
bounding the energy and other subtle optimum design questions. Indeed, the
theorem has found its vital applications in optimum design of: two-phase and
three-phase composite bodies, see Jasiuk [10], Cherkaev [17], Milton [18],
Cherkaev and Dzierżanowski [19], and in the problems of optimization of
composite plates, see Lurie and Cherkaev [4], cf. [11], and composite shells,
see Dzierżanowski [20].
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