PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Use of 3D Imaging in Surface Flatness Control Operations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a surface flatness control system designed for installation on a production line. Such a system allows the control of all blanks leaving the production line in terms of measuring flatness made in the conditions prevailing on the production line. The article discusses 3D imaging methods enabling the construction of a surface image. An analysis of imaging parameters for each method is presented. For the selected imaging method, an analysis of the imaging resolution is presented. An example of flatness measurement for a selected element after a welding operation is shown. The flatness measurement algorithm is discussed, and the results of measurements are presented. The results of measurements for selected two product groups are presented.
Twórcy
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics
Bibliografia
  • 1. Sałaciński T., SPC. Statystyczne sterowanie procesami produkcji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2016.
  • 2. Adamczak S.: Pomiary geometryczne powierzchni. Zarysy kształtu, falistość i chropowatość. Wydawnictwa Naukowo Techniczne, Warszawa 2008.
  • 3. Filipowski R., Lechniak Z., Zawora J.: Flatness error of a plane in the hand operated Coordinate Measuring Machine. Mechanik, 89(2), 2016: 100-104.
  • 4. Bartkowiak T., Gessner A.: Determination of minimal sample size for flatness error estimation by means of coordinate measurement. Mechanik, 87(8-9), 2014: 7-16.
  • 5. Filipowski R., Lechniak Z., Zawora J.: Flatness error of a plane in the hand operated Coordinate Measuring Machine. Mechanik, 89(2), 2016: 100-104.
  • 6. Zagajski P., Dreszer K. A.: Laser interferometer use in measurements of geometrical sizes and constructional agricultural machines. Inżynieria Rolnicza, Vol. 12, No. 11(109), 2008: 255–262.
  • 7. Adamczyk, J., Sioma A., Automatization of workspace control based on ToF technology. Proc. SPIE 10808, 108081E-1–108081E-9, 2018.
  • 8. Junttila, V., Kauranne, T., Finley, A. and Bradford, J.B., Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR. IEEE transactions on geoscience and remote sensing, 53(10), 2015: 5600–5612.
  • 9. Di Stefano L., Marchionni M. and Mattoccia S., .A PC-based real-time stereo vision system. Machine Graphics & Vision, 13(3), 2004: 197–220.
  • 10. Brown, M.Z., Burschka, D. and Hager, G.D., Advances in computational stereo. IEEE Trans. on Pattern Analysis and Machine Intelligence, 25(8), 2003: 993–1008.
  • 11. Sioma, A., 3D imaging methods in quality inspection systems. Proceedings of SPIE - The International Society for Optical Engineering, Vol. 11176, 2019.
  • 12. Amann, M.C., Bosch, T., Lescure, M., Myllylä, R. and Rioux, M., Laser ranging: A critical review of usual techniques for distance measurement. Opt. Eng. 40(1), 2001: 10-19.
  • 13. Sioma, A., Laser illumination in triangulation vision systems. Photonics applications in astronomy, communications, industry, and high energy physics experiments, Vol. 12040, 2021.
  • 14. Sioma, A., Geometry and resolution in triangulation vision systems. Photonics applications in astronomy, communications, industry, and high energy physics experiments. Proceedings of SPIE, Vol. 11581, 2020.
  • 15. Lakot S., Gorog A., Flatness measurement by multipoint methods and by scanning methods. Ad-Alta J.
  • 16. Collins T., Bartoli A., Infinitesimal plane-based pose estimation. International journal of computer vision, 109(3), 1-36 (2014).
  • 17. Balazs M., Assessment of flatness error by regression analysis. Measurement, 171, 2021: 108720.
  • 18. Raghunandan R. Venkateswara Rao P., Selection of sampling points for accurate evaluation of flatness error using coordinate measuring machine. J. Mater. Process. Technol., 202, 2008: 240–245.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7914f735-42a6-4424-b926-bab4bc429c53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.