PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A real-time model of locomotion module DTC drive for hardware-In-the-loop implementation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model czasu rzeczywistego modułu napędu DTC w implementacji hardware-in-the-loop
Języki publikacji
EN
Abstrakty
EN
A real-time model of AC electric motor drive for an open link locomotion module is investigated. A new numeric single-step method of average voltage on the integration step is used for the modelling of the electrical drive integrated in the locomotion model. The features of this method are the high operation performance and numerical stability. It is shown that proposed approach significantly decreases computational time, hence allowing for taking into account agile dynamics of the locomotion module when synthesizing observers or controllers.
PL
W niniejszej pracy przedstawiono wyniki badania modelu napędu elektrycznego AC dla modułu napędowego z otwartym łączem realizowane w czasie rzeczywistym. Do modelowania napędu elektrycznego przedstawionego w zaproponowanym modelu zastosowano nową jednostopniową metodę pomiaru średniego napięcia przy użyciu całkowania numerycznego. Cechy tej metody to wysoka wydajność i stabilność numeryczna. Wykazano, że proponowane podejście znacznie skraca czas obliczeniowy, co pozwala na uwzględnienie dynamiki modułu napędowego w budowie kontrolerów bądź systemów pomiarowych.
Rocznik
Strony
60--65
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Lviv Polytechnic National University, Institute of Power Engineering and Control Systems, Bandera str., 79013 Lviv, Ukraine
  • UTP University of Science and Technology in Bydgoszcz, Institute of Electrical Engineering, al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz
  • Lviv Polytechnic National University, Institute of Power Engineering and Control Systems, Bandera str., 79013 Lviv, Ukraine
  • University of Alabama at Birmingham, Department of Mechanical Engineering, Business & Engineering Complex Room 257, 1150 10th Avenue South Birmingham, AL 35294
  • Lviv Polytechnic National University, Institute of Power Engineering and Control Systems, Bandera str., 79013 Lviv, Ukraine
  • UTP University of Science and Technology in Bydgoszcz, Institute of Electrical Engineering, al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz
  • University of Alabama at Birmingham
Bibliografia
  • [1] BÉLANGER, J., P. VENNE, and J.-N. PAQUIN, The what, where, and why of real-time simulation. Planet RT 1 (1), 2010, pp. 37-49. Available at: https://www.opal-rt.com/wpcontent/ themes/enfold-opal/pdf/L00161_0436.pdf
  • [2] FANG, K., Y. ZHOU, P. MA and M. YANG, Credibility evaluation of hardware-in-the-loop simulation systems. In: 2018 Chinese Control And Decision Conference (CCDC). Shenyang, 2018, pp. 3794-3799. DOI: 10.1109/CCDC.2018.8407782.
  • [3] VILSEN, S. A., M. F⊘RE and A. J. S⊘RENSEN. Numerical models in real-time hybrid model testing of slender marine systems. In: OCEANS 2017 – Anchorage. Anchorage, AK, 2017, pp. 1-6.
  • [4] PROKHOROV, A., Yu. BOROVIKOV, and A. GUSEV. Real time hybrid simulation of electrical power systems: Concept, tools, field experience and smart grid challenges. In: Int. J. Smart Grid Clean Energy, vol. 1, no. 1, Sep. 2012, pp. 67–68.
  • [5] BOROVIKOV, Y.S., A.O. SULAYMANOV, A.S. GUSEV and M.V. ANDREEV. Simulation of automatic exciting regulators of synchronous generators in hybrid real-time power system simulator. In: 2nd Intern. Conference "Systems and Informatics (ICSAI), Shanghai, 2014, pp. 153 – 158.
  • [6] Plakhtyna, O., Kutsyk, A., Semeniuk, M. An analysis of fault modes in an electrical power-generation system on a real-time simulator with a real automatic excitation controller of a synchronous generator. Elektrotehniski Vestnik/Electrotechnical Review, 2019, 86(3), pp. 104-109.
  • [7] LIU J., L. ZHANG, Q. CHEN, S. QUAN and R. LONG. Hardware-in-the-loop test bench for vehicle ACC system. In: 2017 Chinese Automation Congress (CAC), Jinan, 2017, pp. 1006-1011.
  • [8] XING J. and H. HE. The application of hardware-in-the-loop on the hybrid power system’s simulation. In: 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, 2008, pp. 1-4.
  • [9] IACCHETTI, M. F., R. PERINI, M. S. CARMELI, F. CASTELLI-DEZZA and N. BRESSAN. Numerical Integration of ODEs in Real-Time Systems Like State Observers: Stability Aspects. IEEE Transactions on Industry Applications. Jan.- Feb. 2012, vol. 48, no. 1, pp. 132-141.
  • [10] Plakhtyna, O., Kutsyk, A., Lozynskyy, A. Method of average voltages in integration step: Theory and application. Electrical Engineering, 2020, 102(4), pp. 2413-2422.
  • [11] AMMAR A. et al. Predictive direct torque control with reduced ripples and fuzzy logic speed controller for induction motor drive. In: 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B), Boumerdes, 2017, pp. 1-6. doi: 10.1109/ICEE-B.2017.8191978
  • [12] AMMAR, A., A. BOUREK and A. BENAKCHA. Efficiency optimization for sensorless induction motor controlled by MRAS based hybrid FOC-DTC strategy. In: 2017 International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, 2017, pp. 152-157. doi: 10.1109/CADIAG.2017.8075648.
  • [13] KRIM, S., S. GDAIM, A. MTIBAA and M. F. MIMOUNI. Real time implementation of DTC based on sliding mode speed controller of an induction motor. In: 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, 2015, pp. 94-100. doi: 10.1109/STA.2015.7505139.
  • [14] VANTSEVICH, V.V., A. LOZYNSKYY, L. DEMKIV, I. HOLOVACH. Fuzzy Logic Control of Agile Dynamics of a Wheel Locomotion Module. In: IAVSD International Symposium on Vehicle Dynamics, Rockhampton, Australia, August 14-18, 2017, pp 401-404.
  • [15] ZHANG, L, G. WEI and D. XIAOLIN. Real-time ground dynamics simulation method of a wheeled mobile robot in virtual terrain. In: 2012 International Conference on Computer Science and Information Processing (CSIP), Xi'an, Shaanxi, 2012, pp. 355-358. DOI: 10.1109/CSIP.2012.6308867
  • [16] MONGA, M., M. KARKEE, S. SUN, L. K. TONDEHAL, B. STEWARD, A. KELKAR and J. ZAMBRENO. Real-time Simulation of Dynamic Vehicle Models using a Highperformance Reconfigurable Platform, Procedia Computer Science. 2012, Volume 9, pp. 338-347. DOI:10.1016/j.procs.2012.04.036.
  • [17] MA, Z., Z. LIU, J. LU and H. CHEN. Study on Real-Time Simulation System of Vehicle Dynamics Via ve-DYNA. In: 2006 IEEE International Conference on Vehicular Electronics and Safety, Beijing, 2006, pp. 454-458. DOI: 10.1109/ICVES.2006.371634
  • [18] PLAKHTYNA O. The mathematical modeling of the electrotechnical systems with semiconductor converters. Lviv: Vushcha shkola, 1986. 164 p.(in Russian)
  • [19] PŁACHTYNA, O., Z. KŁOSOWSKI, R. ŻARNOWSKI. Mathematical model of DC drive based on a step-averaged voltage numerical method. Przegląd Elektrotechniczny. 2011, 87, 12a, pp.51-56. (in Polish).
  • [20] PŁACHTYNA, O., Z. KŁOSOWSKI, R. ŻARNOWSKI. Efficiency evaluation of average-step voltages method comparing to clasical methods of numerical integration applied to mathematical models of eletrical circuits. Prace Naukowe Politechniki Śląskiej. Elektryka. 2012, 217, 1, pp.121-133. (in Polish).
  • [21] KUTSYK, A.S. The object-oriented method for analize of electromechanical systems". Technical electrodynamics. 2006, №.2, pp. 57–63. (in Ukrainian).
  • [22] VANTSEVICH, V. Agile Dynamics Fundamentals for Tire Slippage Modeling and Control. In: ASME DETC2014-34464, August 17-20, Buffalo, NY, 2014. doi:10.1115/DETC2014- 34464
  • [23] VANTSEVICH, V. V., A. LOZYNSKYY, L. DEMKIV. A Wheel Rotational Velocity Control Strategy for An open-Link Locomotion Module. In: 19th International and 14th European- African Regional Conference of the ISTVS, Budapest, Hungary, September 25-27, 2017, pp. 151-162
  • [24] VANTSEVICH, V. V., J. GRAY, J. PALDAN. An agile tire slippage estimation based on new tire and wheel rolling characteristics. In: 13th European Conference of the ISTVS, Rome, Italy, 2015
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-791132f0-c285-496c-9bc4-6c0213144ae2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.