PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

100 Gb/s Data Link Layer - from a Simulation to FPGA Implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a simulation and hardware implementation of a data link layer for 100 Gb/s terahertz wireless communications is presented. In this solution the overhead of protocols and coding should be reduced to a minimum. This is especially important for high-speed networks, where a small degradation of efficiency will lower the user data throughput by several gigabytes per second. The following aspects are explained: an acknowledge frame compression, the optimal frame segmentation and aggregation, Reed-Solomon forward error correction, an algorithm to control the transmitted data redundancy (link adaptation), and FPGA implementation of a demonstrator. The most important conclusion is that changing the segment size influences the uncoded transmissions mostly, and the FPGA memory footprint can be significantly reduced when the hybrid automatic repeat request type II is replaced by the type I with a link adaptation. Additionally, an algorithm for controlling the Reed-Solomon redundancy is presented. Hardware implementation is demonstrated, and the device achieves net data rate of 97 Gb/s.
Słowa kluczowe
Rocznik
Tom
Strony
90--100
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany
  • IHP Microelectronics GmbH Im Technologiepark 25 15236 Frankfurt (Oder), Germany
autor
  • IHP Microelectronics, GmbH Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
autor
  • Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany
autor
  • Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany
Bibliografia
  • [1] S. Koenig et al., “Wireless sub-THz communication system with high data rate”, Nature Photonics, vol. 7, no. 12, pp. 977–981, 2013.
  • [2] F. Boes, T. Messinger, J. Antes, D. Meier, A. Tessmann, and I. Kallfass, “Ultra-broadband MMIC-based wireless link at 240 GHz enabled by 64 GS/s DAC”, in Proc. 39th Int. Conf. Infrared, Millim., & Terahertz Waves IRMMW-THz 2014, Tucson, AZ, USA, 2014.
  • [3] H. Wang, W. Yuan, B. Zhang, H. Li, Z. Zhang, X. Yang, and W. Shi, “The design, test, and application of the front end in 0.3 THz wireless communication systems”, in Proc. Selec. Proc. Photoelec. Technol. Committee Conf. SPIE held June-July 2015, vol. 9795, 2015 (doi: 10.1117/12.2214175).
  • [4] T. Nagatsuma, K. Kato, and J. Hesler, “Enabling technologies for real-time 50-Gbit/s wireless transmission at 300 GHz”, in Proc. ACM Int. Conf. Nanoscale Comput. & Commun. ACM NanoCom 2015, Boston, MA, USA, 2015
  • [5] I. T. Monroy, “Photonic techniques for sub-Terahertz wireless data transmission”, in Proc. Photonic Networks and Devices (Networks) 2015, Boston, MA, 2015 (doi:10.1364/NETWORKS.2015.NeT1D.1).
  • [6] K. KrishneGowda, T. Messinger, A. C. Wolf, R. Kraemer, I. Kallfass, and J. C. Scheytt, “Towards 100 Gbps wireless communication in THz Band with PSSS modulation: A promising hardware in the loop experiment”, in Proc. IEEE Int. Conf. Ubiquit. Wirel. Broadb. ICUWB 2015, Montreal, Canada, 2015.
  • [7] 802.11ad-2012 – IEEE Standard for Information Technology – Telecommunications and Information Exchange Between Systems – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band, IEEE Standard Association, 12.2012 [Online]. Available: http://www.standards.ieee.org
  • [8] T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao, and T. Turletti, “Aggregation with fragment retransmission for very high-speed WLANs”, IEEE/ACM Trans. Networ. (TON), vol. 17, no. 2, pp. 591–604, 2009.
  • [9] D. Qiao, S. Choi, and K. G. Shin, “Goodput analysis and link adaptation for IEEE 802.11 a wireless LANs”, IEEE Trans. Mob. Comput., vol. 1, no. 4, pp. 278–292, 2002.
  • [10] D. Skordoulis, Q. Ni, H.-H. Chen, A. P. Stephens, C. Liu, and A. Jamalipour, “IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs”, IEEE Wirel. Commun., vol. 15, no. 1, pp. 40–47, 2008.
  • [11] E. H. Ong, J. Kneckt, O. Alanen, Z. Chang, T. Huovinen, and T. Nihtil, “IEEE 802.11ac: Enhancements for very high throughput WLANs”, in Proc. IEEE 22nd Int. Symp. Personal Indoor & Mob. Radio Commun. PIMRC 2011, Toronto, Canada, 2011.
  • [12] S. Choi and K. Shin, “A class of adaptive hybrid ARQ schemes for wireless links”, IEEE Trans. Veh. Technol., vol. 50, no. 3, pp. 777–790, 2001.
  • [13] L. Badia, N. Baldo, M. Levorato, and M. Zorzi, “A Markov framework for error control techniques based on selective retransmission in video transmission over wireless channels”, IEEE J. Selec. Areas Commun., vol. 28, no. 3, pp. 488–500, 2010.
  • [14] M. A. Ingale, “Error correcting codes in optical communication systems”, Master Thesis, School of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2003.
  • [15] S. Falahati and A. Svensson, “Hybrid type-II ARQ schemes with adaptive modulation systems for wireless channels”, in IEEE VTS 50th Veh. Technol. Conf. VTC 1999-Fall, Amsterdam, The Netherlands, 1999.
  • [16] M. Ehrig and M. Petri, “60 GHz broadband MAC system design for cable replacement in machine vision applications”, AEU-Int. J. Elec. Commun., vol. 67, no. 12, pp. 1118–1128, 2013.
  • [17] E. Esteves, P. J. Black, and M. I. Gurelli, “Link adaptation techniques for high-speed packet data in third generation cellular systems”, in Proc. Eur. Wirel. Conf., Florence, Italy, 2002.
  • [18] S. Lin and D. Costello, Error Control Coding: Fundamentals and Applications, New Jersey: Prentice-Hall, 1983.
  • [19] Ł. Łopaciński, M. Brzozowski, R. Kraemer, and J. Nolte, “100 Gbps wireless – challenges to the data link layer”, in IEICE Inform. & Commun. Technol. Forum IEICE ICTF 2014, Poznań, Poland, 2014.
  • [20] H. Chen, R. G. Maunder, and L. Hanzo, “A survey and tutorial on low-complexity turbo coding techniques and a holistic hybrid ARQ design example”, IEEE Commun. Surv. & Tutor., vol. 15, no. 4, pp. 1546–1566, 2013 (doi: 10.1109/SURV.2013.013013.00079).
  • [21] M. Marinkovic, M. Krstic, E. Grass, and M. Piz, “Performance and complexity analysis of channel coding schemes for multi-Gbps wireless communications”, in Proc. IEEE 23rd Int. Symp. Personal Indoor and Mob. Radio Commun. PIMRC 2012, Sydney, Australia, 2012.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-790a6d0c-218b-4de8-85a6-d837d1d5ba98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.