PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of actively diffusing impurities of sulfur and oxygen in ductility-dip cracking susceptibility of Ni-Cr-Fe welds

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To determine the temperature conditions of sulphur and phosphorus moving to sample surface for alloys with different initial sulphur content. Design/methodology/approach: Investigation of samples from In 690, Kh20N16AG6, In52MSS alloys in Auger spectrometer JAMP-9500F for determination of the probability of saturation of the free surface (as grain boundary model) with sulphur from the solid solution. Results obtained without removing the samples from the chamber, stage-by-stage heating up to 800°C with determination of element content every 100°C. Findings: It is shown that sulphur has the tendency of diffusing to the interface from the middle of the grain body and forming segregations in the form of a monolayer even at its slight (0.00015 wt.%) content in the alloy. Research limitations/implications: Presence of actively diffusing impurities (C, O, H, S, P), dissolved in the metal, in the case of a gradient of temperatures and stresses, leads to redistribution of these impurities between the solid solution and surface of the sample, or solid solution and grain boundaries (interface). According to the obtained data, change of elemental composition proceeds within 0.5-1 nm from the grain boundary or from the sample surface and leads to formation of monolayers. Practical implications: To prevent the formation of cracks it is necessary not only to reduce the content of impurity elements in the alloy, but to prevent moving them to the boundary of grains and creating mono layers. Originality/value: For the selected alloys, the formation of monolayers is the most intensive at temperatures of 700-800° that coincides with DTR in the temperature range of 0.6-0.8 Ts. Such monolayers can lead to ductility dip cracks formation.
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
  • E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazimir Malevich Str., UA-03680 Kyiv-150, Ukraine
  • E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazimir Malevich Str., UA-03680 Kyiv-150, Ukraine
  • E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazimir Malevich Str., UA-03680 Kyiv-150, Ukraine
autor
  • E. O. Paton Electric Welding Institute, NAS of Ukraine, 11 Kazimir Malevich Str., UA-03680 Kyiv-150, Ukraine
Bibliografia
  • [1] E.A. Torres, F.G. Peternella, R. Caram, A.J. Ramirez, In Situ Scanning electron Microscopy High Temperature Deformation Experiments to Study ductility Dip Cracking of Ni-Cr-Fe Alloys, in: T. Kannengiesser, S.S. Babu, Y.-i. Komizo, A. Ramirez (Eds.), In-situ Studies with Phonons, Neutrons and Electrons Scattering, Springer-Verlag, Berlin Heidelberg, 2010, 27-39, DOI: 10.1007/978-3-642-14794-4.
  • [2] K. Yushchenko, V. Savchenko, N. Chervyakov, A. Zvyagintseva, E. Guyot, Comparative hot cracking evaluation of welded joints of alloy 690 using filler metals Inconel® 52 and 52 MSS, Welding in the World 55/9-10 (2011) 28-35, DOI: https://doi.org/10.1007/BF03321317.
  • [3] J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, John Wiley & Sons, 2005.
  • [4] ISO/TR 17641-3:2005, Destructive tests on welds and metallic materials – Hot cracking tests for weldments – Arc welding processes – Part 3: Externally loaded tests.
  • [5] K.A. Yushchenko, V.S. Savchenko, A.V. Zvyagintseva, N.O. Chervyakov, L.I. Markashova, Comparative Evaluation of Mesoscale Sensitivity to Crack Formation in Multi-pass Welds Using Wires IN52 and IN52MSS, in: T. Boellinghaus, J.C. Lippold, C.E. Cross (Eds.), Cracking Phenomena in Welds IV, Springer International Publishing, Switzerland, 2016, 207-218, DOI: 10.1007/978-3-319-28434-7.
  • [6] M.D. Borcha, A.V. Zviagintseva, V.M. Tkach, K.A. Yushchenko, S.V. Balovsyak, I.M. Fodchuk, V.Yu. Khomenko, Local deformations in the vicinity of the welded-joint crack of nickel alloy determined with use Fourier transform of the Kikuchi patterns, Metallofizika i Noveishii Tekhnologii 35/10 (2013) 1359-1370.
  • [7] K.A. Yushchenko, A.V. Zviaginsteva, G.B. Belyaev, N.O. Chervyakov, I.R. Volosatov, N.Yu. Kakhovskii, Yu.V. Oleinik, Energy parameters of cracking in multipass welding of alloys of Ni-Cr-Fe alloying system, Metallofizika i Noveishii Tekhnologii 38/11 (2016) 1513-1526.
  • [8] K. Saida, K. Nishimoto Regulatory Criteria of Minor and Impurity Elements for Welding Integrity of Alloy 690 and Alloy690 to Type 316L Stainless Steel Multipass Welds-Evaluation Technologies for Integrity in Repair Welding of Ageing Plants, and for Reliability of Repaired Welds (Part1), Proceedings of the International Symposium on the Ageing Management & Maintenance of Nuclear Power Plants, 2010, 207-220.
  • [9] H.-P. Chen, R.K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K.-i. Nomura, A.C.T. van Duin, P. Vashishta, Z. Yaun, Embrittlement of Metal by Solute Segregation-Induced Amorphization, Physical Review Letters 104 (2010) 155502(1-4), DOI: https://doi.org/10.1103/PhysRevLett.104.155502.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7906518c-2d21-488f-90de-796045f3e283
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.