Tytuł artykułu
Identyfikatory
Warianty tytułu
Microbial oils in the food industry
Języki publikacji
Abstrakty
Olej mikrobiologiczny może stanowić w pełni ekologiczne i wegańskie źródło tłuszczu spożywczego, cennych żywieniowo kwasów tłuszczowych, lub być surowcem dla zielonego paliwa. O jego przeznaczeniu decyduje skład kwasów tłuszczowych. Wśród dobrych producentów oleju mikrobiologicznego znajdują się pleśnie, drożdże, mikroalgi oraz traustochytridia. Oleje bogate w wielonienasycone kwasy tłuszczowe stanowią m.in. składniki pasz w akwakulturze ryb morskich, aszczególnie zasobne w kwas dokozaheksaenowy (DHA) stosowane są jako dodatki do mleka modyfikowanego, preparatów mlekozastępczych i innych produktów spożywczych lub jako składniki suplementów diety. Oleje mikrobiologiczne charakteryzujące się dużym udziałem kwasów nasyconych są alternatywnym do olejow roślinnych surowcem w produkcji biodiesla.
Microbiological oil might be afully ecological and vegan source of nutritional fat, and valuable fatty acids, or can be used as araw material for green fuel, and its intended use is determined by the fatty acids profile. The microbial producers of oil include molds, yeasts, microalgae, and thraustochytridia. Oils rich in polyunsaturated fatty acids are used as feed ingredients in marine fish aquaculture, and those rich in docosahexaenoic acid (DHA) are used as additives to formula milk, milk substitutes, and other food products or as ingredients ofdietary supplements. Microbial oils with ahigh content of saturated acids are alternative raw materials to vegetable oils in the production of biodiesel.
Wydawca
Czasopismo
Rocznik
Tom
Strony
46--49
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
- Katedra Biotechnologii i Mikrobiologii Żywności, Instytut Nauk o Żywności, SGGW, Warszawa
- Katedra Biotechnologii i Mikrobiologii Żywności, Instytut Nauk o Żywności, SGGW, Warszawa
Bibliografia
- [1] Abeln F., C.J. Chuck. 2021. The history, state of the art and future prospects for oleaginous yeast research. Microbial Cell Factories 20 (1): 221. https://doi.org/10.1186/s12934-021-01712-1.
- [2] Bentsen H. 2017. Dietary polyunsaturated fatty acids, brain function and mental health. Microbial Ecology in Health and Disease, 28 (sup1). https://doi.org/10.1080/16512235.2017.1281916
- [3] Carsanba E., S. Papanikolaou, H. Erten. 2018. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Critical Reviews in Biotechnology 38 (8). https://www.tandfonline.com/doi/full/10.1080/07388551.2018.1472065.
- [4] Chattopadhyay A., M.K. Maiti. 2021. Chapter One – Lipid production by oleaginous yeasts. W Advances in Applied Microbiology, Volume 116, 1-98. Academic Press. https://doi.org/10.1016/ bs.aambs.2021.03.003.
- [5] Diwan B., P. Parkhey, P. Gupta. 2018. From Agro-Industrial Wastes to Single Cell Oils: A Step towards Prospective Biorefinery. Folia Microbiologica 63 (5): 547–68. https://doi.org/10.1007/s12223-018-0602-7.
- [6] Donot F., A. Fontana, J. C. Baccou, C. Strub, S. Schorr-Galindo. 2014. Single Cell Oils (SCOs) from Oleaginous Yeasts and Moulds: Production and Genetics. Biomass and Bioenergy 68: 135–150. https://doi.org/10.1016/j.biombioe.2014.06.016.
- [7] Ehr I.J., M.E. Persia, E.A. Bobeck. 2017. Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed. Poultry Science 96 (6): 1791-1799. https://doi.org/10.3382/ps/pew462.
- [8] Internet 1: Single Cell Oil Market Size To Surpass USD 726.4 Bn By 2032. 2023. 2023. https://www. precedenceresearch.com/single-cell-oil-market.
- [9] Ganesan B., C. Brothersen, D.J. McMahon. 2014. Fortification of Foods with Omega-3 Polyunsaturated Fatty Acids. Critical Reviews in Food Science and Nutrition 54 (1): 98–114. https://doi.org/10.1080/ 10408398.2011.578221.
- [10] Gientka, I., M. Gadaszewska, S. Błażejak, M. Kieliszek, A. Bzducha-Wróbel, L. Stasiak-Różańska, A.M. Kot. 2017. Evaluation of lipid biosynthesis ability by Rhodotorula and Sporobolomyces strains in medium with glycerol. European Food Research Technology 243: 275–286. https://doi.org/10.1007/ s00217-016-2742-9.
- [11] Gientka I., P. Grela, A.M. Kot, L. Stasiak-Różańska. 2016. Mikrobiologiczne źródła DHA. Przemysł Spożywczy 11: 25-27. https://doi.org/10.15199/65.2016.11.6.
- [12] Jovanovic S., D. Dietrich, J. Becker, M. Kohlstedt, C. Wittmann. 2021. Microbial production of polyunsaturated fatty acids – high-value ingredients for aquafeed, superfoods, and pharmaceuticals. Current Opinion in Biotechnology 69: 199-211 https://doi.org/10.1016/j.copbio.2021.01.009.
- [13] Karameroub E.E., C. Webb. 2019. Cultivation Modes for Microbial Oil Production Using Oleaginous Yeasts – A Review. Biochemical Engineering Journal 151: 107322. https://doi.org/10.1016/j.bej.2019.107322.
- [14] Magdouli S., S.K. Brar, J.F. Blais. 2016. Co-culture for lipid production: Advances and challenges. Biomass and Bioenergy 92: 20-30. https://doi.org/10.1016/j.biombioe.2016.06.003.
- [15] Marventano S., P. Kolacz, S. Castellano, F. Galvano, S. Buscemi, A. Mistretta. G.Grosso 2015. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: does the ratio really matter? International Journal of Food Sciences and Nutrition J Food Sci Nutr, Early Online: 1–12. https://doi.org/10.3109/09637486.2015.107779
- [16] Naik B., V. Kumar. 2014. Cocoa butter and its alternatives: A review. Journal of Bioresource Engineering and Technology 1: 7–17.
- [17] Ochsenreither K., C. Glück, T. Stressler, L. Fischer, C. Syldatk. 2016. Production Strategies and Applications of Microbial Single Cell Oils. Frontiers in Microbiology 7: 1539. https://doi.org/10.3389/ fmicb.2016.01539.
- [18] Santigosa E., R.E. Olsen, A. Madaro, L. Søfteland. I. Carr. 2023. The impact of varying EPA:DHA ratio on Atlantic salmon health and welfare. Aquaculture 576, https://doi.org/10.1016/j.aquaculture.2023.739868
- [19] Sprague M., J. Walton, P.J. Campbell, F. Strachan, J.R. Dick, J.G. Bell. 2015. Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts. Food Chemistry 185: 413-421. https://doi.org/10.1016/j.foodchem.2015.03.150.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-790584bb-852c-4b74-acd5-1ffadd13307f