PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of biogas combustion kinetics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utilization of new renewable energy sources has been of special interest during the past years. Biogas can be used as a complementary fuel to natural gas for heating or power generation. The focus of this research was to conduct a detailed kinetic study of biogas diffusion flame structure. The analysis was performed using two numerical approaches. In the first step a laminar 1-D counter flow diffusion flame was employed to study chemical kinetics of biogas without radiative losses. In the second step a diffusion flame was established behind a swirl burner at the inlet to a virtual chamber in a 2-D domain. In this case a turbulent flow with combustion and radiative heat transfer was simulated via Computational Fluid Dynamics. Influence of methane dilution with CO2 was investigated by comparison of methane flame with three different biogas composition flames.
Słowa kluczowe
Rocznik
Strony
145--154
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Wroclaw University of Technology Institute of Heat Engineering and Fluid Mechanics, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Division of Chemistry and Technology of Fuel, Gdanska 7/9, 50-344 Wroclaw, Poland
Bibliografia
  • [1] Borjesson P., Berglund, M. Environmental systems analysis of biogas systems-Part I: Fuel cycle emissions. Biomass Bioenergy (2006), 30 (5), 469
  • [2] Chen S. L., McCarthy J. M. , Heap M. P., Seeker W. R., Pershing D. W. Bench and pilot scale process evaluation of reburning for in-furnace NOx reduction. 21st Symposium (Int.) on Combustion. Pittsburgh, PA: the Combustion Institute: (1986). p. 1189-69
  • [3] Kee R.J. Coltrin M.E., Glarborg P. Chemically Reacting Flow: Theory and Practice, Hoboken 2003. John Wiley & Sons, Inc.
  • [4] Lutz A.E., Kee R.J., Grcar J.F., Rupley F.M. OPPDIF: A Fortran Program for Computing Opposed Flow Diffusion Flames, SAND96-8243, Unlimited Release (1996)
  • [5] Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R.K., Song S., Gardiner W.C., Jr. V.V.L., Qin Z. GRI-Mech 3.0 Mechanism, http://www.me.berkeley.edu/gri_mech/
  • [6] Park J., Hwang, D. J., Kim, K.T., Lee S.B., Keel S.I. Evaluation of chemical effects of added CO2 according to flame location. Int. J. Energy Res. (2004), 28 (6), 551
  • [7] Liu F., Guo H., Smallwood G. J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames. Combust. Flame (2003), 133 (4), 495
  • [8] Liu F. S., Guo H. S., Smallwood G. J., Gulder O. L. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combust. Flame (2001), 125 (1-2), 778–787
  • [9] Ansys Fluent 13. Theory Guide. Ansys Inc., Canonsburg, US (2010)
  • [10] Van doormaal J. P., Dryer F. L. Enhancements of the SIMPLE Methods for Predicting Incompressible Fluid Flows, Numerical Heat Transfer, (1984), Vol. 7, pp. 147-163
  • [11] Shih T., Liou W., Shabbir A., Yang Z., Zhu J. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation. Computers Fluids, 24(3) (1995) 227-238
  • [12] Jamaluddin A., Smith P. Predicting radiative transfer in axisymmetric cylindrical enclosures using the discrete transfer method. Combustion Science Technology 62 387 (1988) 173–186
  • [13] Magnussen B. F., Hjertager B. H. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. 16th Symp. (Int'l.) on Combustion. The Combustion Institute (1976) 719-729
  • [14] Arnold A., Bombach R., Kappeli B., Schlegel A. Quantitive measurements of OH concentration fields by two-dimensional laser-induced fluorescence, Applied Physics, vol. 64 (1997), pp. 579-583
  • [15] Bombach R., Kappeli B. Simultaneous visualization of transient species in flames by planar-laser-induced fluorescence using a single laser system, Applied Physics, vol. 68 (1999), pp. 251-255
  • [16] Liu F.S., Guo H.S., Smallwood G.J., Gulder, O.L. The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: Implications for soot and NOx formation. Combust. Flame (2001), 125 (1-2), pp. 778–787
  • [17] Jahangirian S., Engeda A., Wichman I.S. Thermal and Chemical Structure of Biogas Counterflow Diffusion Flames, Energy & Fuels, vol. 23 (2009), pp. 5312-5321
  • [18] Li S.C., Williams F.A. NOx formation in two-stage methane-air flames, Combust. Flame (1999), 118 (3), pp. 399
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79057013-45e6-4b0b-b7fc-dd2c972fb250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.