PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The influence of electronic detonators on the quality of the tunnel excavation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza wpływu detonatorów elektronicznych na jakość konturu wyrobiska
Języki publikacji
EN
Abstrakty
EN
In drill and blast tunneling method (D&B), non-electric detonators are the most commonly used initiation system. The constant development of excavation technology provides advanced tools for achieving better results of excavation. The research presented in this paper was focused on the attempt to evaluate the influence of electronic detonators, which nowadays are unconventional in tunnelling engineering, on the quality of the excavated tunnel contour. Based on the data form Bjørnegård tunnel in Sandvika, where electronic detonators were tested in five blasting rounds, detailed analysis of drilling was performed. The analysis was made based on the data from laser scanning of the tunnel. 103 profile scans were used for the analysis: 68 from non-electric detonators and 35 from electronic detonators rounds. The results analyzed in terms of contour quality showed that comparing to the results from rounds blasted with non-electric detonators, there was not significant improvement of the contour quality in rounds with electronic detonators.
PL
Obserwowany w dzisiejszych czasach rozwój metod tunelowania ukierunkowany jest przede wszystkim na redukcję czasu i kosztu budowy. Efektywność jest najważniejszym czynnikiem w procesie planowania i realizacji konstrukcji. W przypadku metod klasycznych budowy tuneli istotny wpływ na efektywność metody ma dobór sposobu urabiania masywu skalnego. W artykule do analizy wybrano technikę strzałową (drill and blast), w której efektywność można opisywać za pomocą wielu czynników, takich jak: stosunek rzeczywistej długości postępu przodka do długości wierconych otworów, poziom drgań i hałasu oraz jakość konturu tunelu, która może być scharakteryzowana poprzez przebranie, niedobranie oraz chropowatość konturu [7-14]. Minimalizacja wartości wszystkich wyżej wymienionych czynników pozwala na optymalizację procesu budowy. Jednym z istotniejszych czynników, przyczyniającym się do redukcji czasu realizacji i kosztu obiektu w odniesieniu do użycia materiałów wybuchowych, stosowanych elementów zabezpieczenia masywu skalnego, czy ograniczenia wywozu ponadplanowego urobku, jest jakość konturu tunelu [15-16]. W literaturze, wielu autorów podkreśla znaczenie dokładności wiercenia [20-29] oraz zastosowanego sposobu inicjacji ładunków wybuchowych w odniesieniu do osiągniętej jakości konturu [30-39]. W artykule podjęto się analizy zagadnienia wpływu stosowania zapalników elektronicznych w miejsce nieelektrycznych na jakość konturu. Zagadnienie analizowano na podstawie wyników badań prowadzonych na projekcie Sandvika-Wøyen. W tunelu Kjørbo-Mølla, części tunelu Bjørnegård, który realizowany był metodą strzałową (D&B), testowano różne detonatory jako układ inicjujący wybuch. Analiza została wykonana na podstawie danych z badań terenowych, z siedmiu rund podstawowych z użyciem zwykłych zapalników nieelektrycznych i pięciu rund testowych z zapalnikami elektronicznymi.
Rocznik
Strony
333--349
Opis fizyczny
Bibliogr. 50 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Instituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, Italy & University of Trieste, Sgonico, Italy
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
Bibliografia
  • [1] D. Chapman, N. Metje, A. Stark, “Introduction to tunnel construction” Second edition. CRC Press. Taylor&Francis Group, LLC, 2018. https://doi.org/10.1201/9781315120164
  • [2] S. Zare, A. Bruland, J. Rostami, “Evaluating D&B and TBM tunnelling using NTNU prediction models”, Tunnelling and Underground Space Technology 59: pp. 55-64, 2016. https://doi.org/10.1016/j.tust.2016.06.012
  • [3] Norwegian Tunnelling Technology, Publication no. 23: pp. 13-16, pp. 99-113. Norwegian Tunnelling Society, Oslo, 2014.
  • [4] B. Maidl, M. Thewes, U. Maidl, “The handbook of tunnel engineering. Drill and blast tunneling” (chapter 5), WILEY-VCH Verlag GmbH, 2013. https://doi.org/10.1002/9783433603499.ch5
  • [5] D. Zou, “Contour Blasting for Underground Excavation”. In: Theory and Technology of Rock Excavation for Civil Engineering. Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-1989-0_17
  • [6] C. Jimeno, E. L. Jimeno, F. J .A. Carcedo, T. V. Ramiro, “Drilling and Blasting of Rocks”, Taylor & Francis Group, 2017. https://doi.org/10.1201/9781315141435
  • [7] Y. Kim, A. Bruland, “Analysis and Evaluation of Tunnel Contour Quality Index”, Automation in Construction 99: pp. 223-237, 2019. https://doi.org/10.1016/j.autcon.2018.12.008
  • [8] A. Skłodowska, M. Mitew-Czajewska, “Contour quality in drill and blast method in Norwegian Tunnelling Method”, Inżynieria i Budownictwo 3/2017: pp. 159-161, 2017 (in Polish).
  • [9] H. L. Arora, D. V. Singh, “Overbreak in underground excavations-some key insights”, 12th International Symposium on Rock Fragmentation by Blasting, Luleå Sweden, 11-13 June 2018.
  • [10] J. A. Ibarra, N. H. Maerz, J. A. Franklin, “Overbreak and underbreak in underground openings Part 2: causes and implications”, Geotechnical and Geological Engineering, Vol. 14, No. 3: pp. 325-340, 1996. https://doi.org/10.1007/BF00421947
  • [11] E. Costamagna, C. Oggeri, P. Segarra, R. Castedo, J. Navarro, “Assessment of contour profile quality in D&B tunneling”, Tunnelling and Underground Space Technology 75: pp. 67-80, 2018. https://doi.org/10.1016/j.tust.2018.02.007
  • [12] G. M. Foderà, A. Voza, G. Barovero, F. Tinti, D. Boldini, “Factors influencing overbreak volumes in drill-and-blast tunnel excavation. A statistical analysis applied to the case study of the Brenner Base Tunnel - BBT”, Tunnelling and Underground Space Technology 105: pp. 103-475, 2020. https://doi.org/10.1016/j.tust.2020.103475
  • [13] H. K. Verma, N. K. Samadhiya, M. Singh, R. K. Goel, P. K. Singh, “Blast induced rock mass damage around tunnels”, Tunnelling and Underground Space Technology 71: pp. 149-158. 2018. https://doi.org/10.1016/j.tust.2017.08.019
  • [14] B. Zou, Z. Xu, J. Wang, Z. Luo, L. Hu, "Numerical investigation on influential factors for quality of smooth blasting in rock tunnels", Advances in Civil Engineering 2020: 9854313, 2020. https://doi.org/10.1155/2020/9854313
  • [15] P. Montagneux, P. Buffard Vercelli, “A new approach for qualifying blasting works in underground”, Tunnels and Underground Cities: Engineering and Innovation meet Archeology, Architecture and Art, volume 3: Geological and geotechnical knowledge and requirements for project implementation - Peila, Viggiani & Celestino (Eds), Taylor & Francis Group, London, 2020.
  • [16] A. Mottahedi, F. Sereshki, M. Ataei, “Development of overbreak prediction models in drill and blast tunneling using soft computing methods”, Engineering with Computers 34: pp. 45-58, 2018. https://doi.org/10.1007/s00366- 017-0520-3
  • [17] A. H. Salum, V. M. S. R. Murthy, “Optimizing blast pulls and controlling blast-induced excavation damage zone in tunnelling through varied rock classes”, Tunnelling and Underground Space Technology 85: pp. 307-318, 2019. https://doi.org/10.1016/j.tust.2018.11.029
  • [18] E. Salas Garcia, A. Diaz Butron, “Tunnels: Blasting Optimization for advance 100%, with overbreak and underbreak lower than 5%. Work Cycle Quality, direct improvement of the efficiency and profitability of an underground work”, DNA-TEC-N-013-B-TUNNEL & MINING, 2019.
  • [19] A. F. McKown, “Perimeter controlled blasting for underground excavations in fractured and weathered rocks”, Environmental and Engineering Geoscience, xxiii (4): pp. 461-478, 1986. https://doi.org/10.2113/gseegeosci.xxiii.4.461
  • [20] N. Innaurato, R. Mancini, M. Cardu, “On the influence of rock mass quality on the quality of blasting work in tunnel driving”, Tunnelling and Underground Space Technology 13 (1): pp. 81-89, 1998. https://doi.org/10.1016/S0886-7798(98)00027-3
  • [21] S. Zare, “Prediction Model and Simulation Tool for Time and Cost of Drill and Blast Tunnelling”, Ph.D Thesis, Norwegian University of Science and Technology, Trondheim, 2007.
  • [22] K. Dey, V. M. S. R. Murthy, “Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class”, Tunnelling and Underground Space Technology 28: pp. 49-56, 2012. https://doi.org/10.1016/j.tust.2011.09.004
  • [23] H. Mohammadi, A. Azad, “Applying rock engineering systems approach for prediction of overbreak produced in tunnels driven in hard rock”, Geotechnical and Geological Engineering 38: pp. 2447-2463, 2020. https://doi.org/10.1007/s10706-019-01161-z
  • [24] H. Mohammadi, B. Barati, A. Y. Chamzini, “Prediction of blast-induced overbreak based on geo-mechanical parameters, blasting factors and the area of tunnel face”, Geotechnical and Geological Engineering 36: pp. 425-437, 2018. https://doi.org/10.1007/s10706-017-0336-3
  • [25] J. van Eldert, “Measuring of over-break and the excavation damage zone in conventional tunneling”, Proceedings of the World Tunnel Congress 2017: Surface challenges - Underground solutions [Internet], 2017.
  • [26] H. Jang, Y. Kawamura, U. Shinji, “An empirical approach of overbreak resistance factor for tunnel blasting”, Tunnelling and Underground Space Technology 92: 103060, 2019. https://doi.org/10.1016/j.tust.2019.103060
  • [27] A. Mottahedi, F. Sereshki, M. Ataei, “Overbreak prediction in underground excavations using hybrid ANFIS-PSO model”, Tunnelling and Underground Space Technology 80: pp. 1-9, 2018. https://doi.org/10.1016/j.tust.2018.05.023
  • [28] W. Zhang, J. Tang, D-S. Zhang, L. Zhang, Y. Sun, W-S. Zhang, “Experimental study on the joint application of innovative techniques for the improved drivage of roadways at depths over 1km: a case study”, Archives of Mining Sciences 65 (2020), 1: pp. 159-178, 2020. https://doi.org/10.24425/ams.2020.132713
  • [29] J. Pengfei, X. Zhang, X. Li, B. Jiang, B. Liu, H. Zhang, “Optimization analysis of construction scheme for largespan highway tunnel under complex conditions”, Archives of Civil Engineering 64(4): pp. 55-68, 2018. https://doi.org/10.2478/ace-2018-0044
  • [30] Q. Gao, W. Lu, Z. Leng, Z. Yang, Y. Zhang, H. Hu, "Effect of initiation location within blasthole on blast vibration field and its mechanism", Shock and Vibration 2019: 5386014, 2019. https://doi.org/10.1155/2019/5386014
  • [31] R. König, “Improvement of tunnel profile by means of electronic detonators”, Modern Trends in Tunnelling and Blast Design: pp. 123-130, 2000.
  • [32] H. P. Rossmanith, "The mechanics and physics of electronic blasting", Proceedings of the 29th ISEE Annual Conference on Explosives and Blasting Technique, Nashville, Tennessee, 2-5 February, vol. 1: pp. 83-101, 2003.
  • [33] H. P. Grobler, “Using Electronic Detonators to Improve All-Round Blasting Performances”, Fragblast, 7:1, pp. 1-12, 2003, https://doi.org/10.1076/frag.7.1.1.14061
  • [34] Y. Bleuzen, F. Monath, M. Quaresma, M. Joao, “Tunnel blasting in a sensitive environment using electronic detonators”, The Journal of Explosives Engineering, sept./oct.: 6-14, 2005.
  • [35] A. Fauske, “La construccion de tuneles urbanos en Noruega”, Rocas y Minerales, July: pp. 62-74, 1998.
  • [36] M. Stratmann, “Moderne Bohr-und Sprengverfahren beim Vortrieb des Mitholztunnel”, Nobel Hefte, 1/2: pp. 31-39, 1996.
  • [37] M. Yamamoto, T. Ichijo, Y. Tanaka, “Smooth blasting with the electronic delay detonator”, 21 st ISEE Int. Conf. on Explosives & Blasting Technique, International Society of Explosives Engineers: pp. 144-156, 1995. https://doi.org/10.1080/13855149909408030
  • [38] H. Fu, L. N. Y. Wong, Y. Zhao, Z. Shen, C. Zhang, Y. Li, “Comparison of Excavation Damage Zones Resulting from Blasting with Nonel Detonators and Blasting with Electronic Detonators”, Rock Mech Rock Eng 47: pp. 809-816, 2014. https://doi.org/10.1007/s00603-013-0419-2
  • [39] M. Cardu, A. Giraudi, P. Oreste, “A review of the benefits of electronic detonators”, REM: Revista Escola de Minas 66(3): pp. 375-382, 2013. https://doi.org/10.1590/S0370-44672013000300016
  • [40] Y. Kim, “Tunnel Contour Quality Index in a drill and blast tunnel” (Ph.D.). Norwegian University of Science and Technology, 2009.
  • [41] Manual 021. Road tunnels, Norwegian Public Roads Administration, NPRA Printing Center, Norway 2004. ISBN 82-7207-540-7
  • [42] V. Isheyskiy, J. A. Sanchidrián, “Prospects of applying MWD technology for quality management of drilling and blasting operations at mining enterprises”, Minerals 10: p. 925, 2020. https://doi.org/10.3390/min10100925
  • [43] J. Navarro, J.A. Sanchidrián, P. Segarra, R. Castedo, E. Costamagna, L.M. López, “Detection of potential overbreak zones in tunnel blasting from MWD data”, Tunnelling and Underground Space Technology 82: pp. 504-516, 2018. https://doi.org/10.1016/j.tust.2018.08.060
  • [44] Statens vegvesen. Håndbok R761 Prosesskode 1: standard beskrivelsestekster for vegkontrakter: hovedprosess 1-7 (1st ed.), Oslo, 2015.
  • [45] Digitalisation in Norwegian tunneling. Publication no 28, Nowregian Tunnelling Society, Oslo, Norway, 2019. ISBN 978-82-92641-45-3
  • [46] Q. Jiang, S. Zhong, P-Z. Pan, Y. Shi, H. Guo, Y. Kou, “Observe the temporal evolution of deep tunnel's 3D deformation by 3D laser scanning in the Jinchuan No. 2 Mine”, Tunnelling and Underground Space Technology 97: pp. 103-237, 2020. https://doi.org/10.1016/j.tust.2019.103237
  • [47] H. Sun, Z. Xu, L. Yao, R. Zhong, L. Du, H. Wu, “Tunnel monitoring and measuring system using mobile laser scanning: design and deployment”, Remote Sensing 12(4): p. 730, 2020. https://doi.org/10.3390/rs12040730
  • [48] N. H. Maerz, J. A. Ibarra, J. A. Franklin, “Overbreak and underbreak in underground openings part 1: measurement using the light sectioning method and digital image processing”, Geotechnical & Geological Engineering 14: pp. 307-323, 1996. https://doi.org/10.1007/BF00421946
  • [49] S. Amvrazis, K. Bergmeister, R. W. Glatzl, “Optimizing the excavation geometry using digital mapping”, Tunnels and Underground Cities: Engineering and Innovation meet Archeology, Architecture and Art, volume 3: Geological and geotechnical knowledge and requirements for project implementation - Peila, Viggiani & Celestino (Eds), Taylor & Francis Group, London, 2020.
  • [50] K. Voit, S. Amvrazis, T. Cordes, K. Bergmeister, “Drill and blast excavation forecasting using 3D laser scanning”, Geomechanic und Tunnelbau 10(3): pp. 298-316, 2017. https://doi.org/10.1002/geot.201600057
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78f9b80f-5015-4a93-bf7d-22c93f66779d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.