Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work aims to present a model-free predictive control (MF–PC) technique that is robust to parameter and model changes to control a boost converter. The MF–PC proposed is based on calculating and updating the value of the current slope in the inductor at each sampling instant and using it to predict the future value of the current to define the optimal state to apply in the next step. To evaluate the performance of this proposal, a fair comparison is made between MF–PC and classical finite control set model predictive control (FCS–MPC) under reference changes and physical converter parameter variations in a boost converter. The experimental results show that the proposed method is robust against parameters and model changes compared to FCS–MPC. Additionally, the proposed controller reduces the number of sensed variables compared to the conventional FCS–MPC and has the simplicity required for converters operating at high frequencies.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
487--501
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Laboratory of Applications in Smart Grids, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile
autor
- Laboratory of Applications in Smart Grids, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile
autor
- Laboratory of Applications in Smart Grids, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile
- Principal investigator MIGA 7820436, Chile
- Energy Transformation Center, Faculty of Engineering, Universidad Andres Bello, Santiago 7500971, Chile
- Assistant Investigator MIGA 7820436, Chile
autor
- Power Electronics, Machines and Control (PEMC) Research Institute, Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Nottingham, 15 Triumph Rd, Lenton, Nottingham NG7 2GT, UK
- Energy Conversion and Power Electronics Laboratory (LCEEP), Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile
Bibliografia
- [1] Kouro S., Cortes P., Vargas R., Ammann U. et al., Model Predictive Control – a Simple and Powerful Method to Control Power Converters, IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826–1838 (2009), DOI: 10.1109/TIE.2008.2008349.
- [2] Rodriguez J., Cortes P., Predictive control of power converters and electrical drives, John Wiley & Sons (2012).
- [3] Rodriguez J., Kazmierkowski M., Espinoza J. et al., State of the Art of Finite Control Set Model Predictive Control in Power Electronics, IEEE transactions on Industrial Informatics, vol. 9, no. 2, pp. 1003–1016 (2013), DOI: 10.1109/TII.2012.2221469.
- [4] Vazquez S., Rodriguez J., Rivera M. et al., Model Predictive Control for Power Converters and Drives: Advances and Trends, IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 935–947 (2017), DOI: 10.1109/TIE.2016.2625238.
- [5] Vazquez S., Leon J., Franquelo L. et al., Model Predictive Control: A Review of Its Applications in Power Electronics, IEEE Industrial Electronics Magazine, vol. 8, no. 1, pp. 16–31 (2014), DOI: 10.1109/MIE.2013.2290138.
- [6] Orłowska-Kowalska T., Blaabjerg F., Rodriguez J., Advanced and intelligent control in power electronics and drives, 531: Springer (2014).
- [7] Cortes P., Kazmierkowski M.P., Kennel R.M. et al., Predictive Control in Power Electronics and Drives, IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4312–4324 (2008), DOI: 10.1109/TIE.2008.2007480.
- [8] Karamanakos P., Liegmann E., Geyer T. et al., Model Predictive Control of Power Electronic Systems: Methods, Results, and Challenges, IEEE Open Journal of Industry Applications, vol. 1, pp. 95–114 (2020), DOI: 10.1109/OJIA.2020.3020184.
- [9] Khalilzadeh M., Vaez-Zadeh S., Rodriguez J. et al., Model-Free Predictive Control of Motor Drives and Power Converters: A Review, IEEE Access, vol. 9, pp. 105733–105747 (2021), DOI: 10.1109/ACCESS.2021.3098946.
- [10] Stenman A., Model-free predictive control, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, pp. 3712–3717 (1999), DOI: 10.1109/CDC.1999.827931.
- [11] Nauman M., Shireen W., Hussain A., Model-Free Predictive Control and Its Applications, Energies, vol. 15, 5131 (2022), DOI: 10.3390/en15145131.
- [12] Jlasii I., Marques A., Open-circuit fault-tolerant operation of permanent magnet synchronous generator drives for wind turbine systems using a computationally efficient model predictive current control, IET Electric Power Applications, vol. 15, no. 7, pp. 837–846 (2021), DOI: 10.1049/elp2.12062.
- [13] Hredzak B., Agelidis V.G., Jang M., A Model Predictive Control System for a Hybrid Battery Ultracapacitor Power Source, IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1469–1479 (2014), DOI: 10.1109/TPEL.2013.2262003.
- [14] Wei Y., Young H., Wang F. et al., Generalized Data-Driven Model-Free Predictive Control for Electrical Drive Systems, IEEE Transactions on Industrial Electronics, vol. 70, no. 8, pp. 7642–7652 (2023), DOI: 10.1109/TIE.2022.3210563.
- [15] Kakigano H., Nomura M., Ise T., Loss evaluation of DC distribution for residential houses compared with AC system, The 2010 International Power Electronics Conference – ECCE ASIA, Sapporo, Japan, pp. 480–486 (2010), DOI: 10.1109/IPEC.2010.5543501.
- [16] Gelani H.E., Dastgeer F., Nasir M. et al., AC vs. DC Distribution Efficiency: Are We on the Right Path?, Energies, vol. 14, 4039 (2021), DOI: 10.3390/en14134039.
- [17] Gelani H.E., Dastgeer F., Siraj K. et al., Efficiency Comparison of AC and DC Distribution Networks for Modern Residential Localities, Appl. Sci., vol. 9, no. 582 (2019), DOI: 10.3390/app9030582.
- [18] Revathi B.S., Prabhakar M., Solar PV Fed DC Microgrid: Applications, Converter Selection, Design and Testing, IEEE Access, vol. 10, pp. 87227–87240 (2022), DOI: 10.1109/ACCESS.2022.3199701.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78f51e6b-ab53-40ee-ab77-32b309e4d6b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.