PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synchrophasors-based transmission line protection in the presence of STATCOM

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distance relay using the transmission line impedance measurement identifies the type and location of the fault. However, any other factors that cause the failure of the measured impedance, makes the relay detect the fault in incorrect location or do not detect the fault at all. One of these factors is the fault resistance which directly increases the measured impedance by the relay. Another factor that indirectly alters the impedance of the transmission line is static synchronous compensator (STATCOM). When a fault happens, current injection by the STATCOM changes the measured signals by the relay and thus makes the calculated impedance incorrect. In this paper, a method is provided based on the combination of distance and differential protection. Firstly, from the current data of buses, faulted transmission line is detected. Then using the presented algorithm, the fault location is calculated on the transmission line. The basis of the algorithm is on the active power calculation of the buses. Fault resistance is calculated from the active powers and its effect will be deducted from calculated impedance by the algorithm. Furthermore, with choosing data of appropriate bus, STATCOM effect is eliminated, and fault location will be obtained.
Rocznik
Strony
58--71
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical Engineering, Abhar Branch, Azad University, Abhar, Iran
Bibliografia
  • 1. S. M. Brahma, "New fault-location method for a single multiterminal transmission line using synchronized phasor measurements," IEEE Trans. Power Del., vol. 21, no. 3, pp. 1148–1153, Jul. 2006.
  • 2. P. Jafarian, and M. Sanaye-Pasand, "High-frequency transients-based protection of multiterminal transmission lines using the SVM technique," IEEE Trans. Power Del., vol. 28, no. 1, pp. 188-196, Jan. 2013.
  • 3. R. K. Aggarwal and A. T. Johns, “Digital differential relaying scheme for teed circuits based on voltage and current signal comparison,” Proc. Inst. Elect. Eng., Gen., Transm. Distrib., vol. 137, no. 6, pp. 414–423, Nov. 1990.
  • 4. S. J. Daniel, R. K. Aggarwal, and A. T. Johns, “Three terminal line protection based on a superimposed component impedance relay,” Proc. Inst. Elect. Eng., Gen., Transm. Distrib., vol. 140, no. 6, pp. 447–454, Nov. 1993.
  • 5. M. Abe, T. Emura, N. Otsuzuki, and M. Takeuchi, “Development of a new fault location system for multi-terminal single transmission lines,” IEEE Trans. Power Del., vol. 10, no. 1, pp. 159–168, Jan. 1995.
  • 6. T. C. Lin, P. Y. Lin, and C. W. Liu, "An algorithm for locating faults in three-terminal multisection nonhomogeneous transmission lines using synchrophasor measurements," IEEE Trans. Smart Grid., vol. 5, no. 1, pp. 38-50, Jan. 2014.
  • 7. S. M. Brahma, "Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements," IEEE Trans. Power Del., vol. 20, no. 2, pp. 1325–1331, Apr. 2005.
  • 8. A. D. Filomena, R. H. Salim, M. Resener, and A. S. Bretas, "Ground distance relaying with fault-resistance compensation for unbalanced systems," IEEE Trans. Power Del., vol. 23, no. 3, pp. 1319-1326, Jul. 2008.
  • 9. V. H. Makawana, and B. R. Bhalja, "A new digital distance relaying scheme for compensation of high-resistance faults on transmission line," IEEE Trans. Power Del., vol. 27, no. 4, pp. 2133-2140, Oct. 2012.
  • 10. Z. Y. Xu, S. J. Jiang, Q. X. Yang, and T. S. Bi, "Ground distance relaying algorithm for high resistance fault," IET Gener. Transm. Distrib., vol. 4, no. 1, pp. 27-35, Jan. 2010.
  • 11. Q. K. Liu, S. F. Huang, H. Z. Liu, and W. S. Liu, "Adaptive impedance relay with composite polarizing voltage against fault resistance," IEEE Trans. Power Del., vol. 23, no. 2, pp. 586-592, Apr. 2008.
  • 12. A. Ghorbani, and M. Arablu, "Ground Distance relay compensation in the presence of delta-hexagonal phase shifting Transformer," IET Gener. Transm. Distrib., vol. 9, no. 15, pp. 2091-2098, Nov. 2015.
  • 13. M. M. Eissa, "Ground distance relay compensation based on fault resistance calculation," IEEE Trans. Power Del., vol. 21, no. 4, pp. 1830-1835, Oct. 2006.
  • 14. A. Ghorbani, "An adaptive distance protection scheme in the presence of phase shifting transformer," Electric Power Systems Research., vol. 129, pp. 170-177, Dec. 2015.
  • 15. S. Sarangi, and A. K. Pradhan, "Synchronised data-based adaptive backup protection for series compensated line," IET Gener. Transm. Distrib., vol. 8, no. 12, pp. 1979–1986, Dec. 2014.
  • 16. S. M. Hashemi, M. Tarafdar Hagh, and H. Seyedi, "A novel backup distance protection scheme for series-compensated transmission lines," IEEE Trans. Power Del., vol. 29, no. 2, pp. 699-707, Apr. 2014.
  • 17. C. Venkatesh, and K. S. Swarup, "Steady-state error estimation in distance relay for single phase to ground fault in series-compensated parallel transmission lines," IET Gener. Transm. Distrib., vol. 8, no. 7, pp. 1318–1337, Jul. 2014.
  • 18. Chi-Shan Yu, Chih-Wen Liu, Sun-Li Yu, and Joe-Air Jiang, "A new PMU-based fault location algorithm for series compensated lines," IEEE Trans. Power Del., vol. 17, no. 1, pp. 33-46, Jan. 2002.
  • 19. A. Ghorbani, B. Mozafari, and M. Khederzadeh, "Impact of SVC on the protection of transmission lines," International Journal of Electrical Power and Energy Systems., vol. 42, no. 1, pp. 702-709, Nov. 2012.
  • 20. S. Raman, R. Gokaraju, and A. Jain, "An adaptive fuzzy Mho relay for phase backup protection with infeed from STATCOM," IEEE Trans. Power Del., vol. 28, no. 1, pp. 120-128, Jan. 2013.
  • 21. R. Dubey, S. R. Samantaray, and B. K. Panigrahi, "Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm," IET Gener. Transm. Distrib., vol. 10, no. 1, pp. 247-256, Jan. 2016.
  • 22. F. A. Albasri, T. S. Sidhu, and R. K. Varma, "Performance comparison of distance protection schemes for shunt-FACTS compensated transmission lines," IEEE Trans. Power Del., vol. 22, no. 4, pp. 2116-2125, Oct. 2007.
  • 23. M. Khederzadeh, and A. Ghorbani, "STATCOM modeling impacts on performance evaluation of distance protection of transmission lines," European Transaction on Electrical Power., vol. 21, no. 8, pp. 2063-2079, Nov. 2011.
  • 24. T. S. Sidhu, R. K. Varma, P. K. Gangadharan, F. A. Albasri, and G. R. Ortiz, "Performance of distance relays on shunt-FACTS compensated transmission lines," IEEE Trans. Power Del., vol. 20, no. 3, pp. 1837-1845, Jul. 2005.
  • 25. K. R. Krishnanand, and P. K. Dash, "A new real-time fast discrete S-Transform for Cross-Differential Protection of Shunt-Compensated Power Systems," IEEE Trans. Power Del., vol. 28, no. 1, pp. 402-410, Jan. 2013.
  • 26. Andres E. Leon, J. M. Mauricio, A. Gómez-Expósito, and Jorge A. Solsona, "Hierarchical wide-area control of power systems including wind farms and FACTS for short-term frequency regulation," IEEE Trans. Power Del., vol. 27, no. 4, pp. 2084-2092, Nov. 2012.
  • 27. N. R. Chaudhurihi-Shan, D. Chakraborty, and B. Chaudhuri, "An architecture for FACTS controllers to deal with bandwidth-constrained communication," IEEE Trans. Power Del., vol. 26, no. 1, pp. 188-196, Jan. 2011.
  • 28. A. Ghorbani, and M. Arablu., "Application of turbine torsional oscillation damping controller to static Var compensator," Journal of Engineering for Gas Turbines and Power., vol. 137, no. 10, pp. 102501–102507, Oct. 2015.
  • 29. A. E. Leon, and J. A. Solsona, "Power oscillation damping improvement by adding multiple wind farms to wide-area coordinating controls," IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1356-1364, May. 2014.
  • 30. C. W. Taylor, “Wide-area stability controls,” in Presented in Imperial College, London, U.K., Mar. 2006.
  • 31. J. D. L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, "Synchronized phasor measurement applications in power systems,"IEEE Trans. Smart Grid., vol. 1, no. 1, pp. 20-27, Jun. 2010. IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE Std. C37.118-2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78f50cf4-f40f-4cd8-be68-abcb0f033aa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.