PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Svalbard as a study model of future High Arctic coastal environments in a warming world

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Svalbard archipelago, a high latitude area in a region undergoing rapid climate change, is relatively easily accessible for field research. This makes the fjords of Spitsbergen, its largest island, some of the best studied Arctic coastal areas. This paper aims at answering the question of how climatically diverse the fjords are, and how representative they are for the expected future Arctic diminishing range of seasonal sea-ice. This study uses a meteorological reanalysis, sea surface temperature climatology, and the results of a recent one-year meteorological campaign in Spitsbergen to determine the seasonal differences between different Spitsbergen fjords, as well as the sea water temperature and ice ranges around Svalbard in recent years. The results show that Spitsbergen fjords have diverse seasonal patterns of air temperature due to differences in the SST of the adjacent ocean, and different cloudiness. The sea water temperatures and ice concentrations around Svalbard in recent years are similar to what is expected most of the Arctic coastal areas in the second half of this century. This makes Spitsbergen a unique field study model of the conditions expected in future warmer High Arctic.
Słowa kluczowe
Czasopismo
Rocznik
Strony
612--619
Opis fizyczny
Bibliogr. 42 poz., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Barnhart, K. R., Miller, C. R., Overeem, I., Kay, J. E., 2016. Mapping the future expansion of Arctic open water. Nat. Clim. Change 6 (3), 280-285, http://dx.doi.org/10.1038/nclimate2848.
  • [2] Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C., Burwicz, E. B., Park, W., Latif, M., Böning, C. W., Madec, G., Wallmann, K., 2011. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys. Res. Lett. 38 (8), L08602, http://dx.doi.org/10.1029/2011GL047222.
  • [3] Błaszczyk, M., Jania, J. A., Hagen, J. O., 2009. Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Res. 30 (2), 85-142.
  • [4] Błaszczyk, M., Jania, J. A., Kolondra, L., 2013. Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since thebeginning of the 20th century. Pol. Polar Res. 34 (4), 327-352.
  • [5] Cisek, M., Makuch, P., Petelski, T., 2017. Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia 59 (4), 413-421, http://dx.doi.org/10.1016/j.oceano.2017.06.004.
  • [6] DeConto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pollard, D., Beerling, D. J., 2012. Past extreme Warming events linked to massive carbon release from thawing permafrost. Nature 484 (7392), 87-92, http://dx.doi.org/10.1038/nature10929.
  • [7] Francis, J. A., Hunter, E., 2007. Changes in the fabric of the Arctic's greenhouse blanket. Environ. Res. Lett. 2 (4), 045011, 6 pp., http://dx.doi.org/10.1088/1748-9326/2/4/045011.
  • [8] Gjelten, H. M., Nordli, O., Isaken, K., Forland, E. J., Sviashchennikov, P. N., Wyszynski, P., Prokhorova, U. V., Przybylak, R., Ivanov, B. V., Urazgildeeva, A. V., 2016. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Res. 35 (1), 29878, http://dx.doi.org/10.3402/polar.v35.29878.
  • [9] IPCC, 2013. In: Stocker, T. F., et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi, Mexico City, 1535 pp.
  • [10] James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I., Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T., Vielstädte, L., Greinert, J., 2016. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: a review. Limnol. Oceanogr. 61 (S1), 283-299, http://dx.doi.org/10.1002/lno.10307.
  • [11] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 77 (3), 437-471, http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  • [12] Liu, Y., Key, J. R., 2016. Assessment of Arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. J. Climate 29 (17), 6065-6083, http://dx.doi.org/10.1175/JCLI-D-15-0861.1.
  • [13] Long, Z., Perrie, W., 2012. Air-sea interactions during an Arctic storm. J. Geophys. Res. 117 (D15), 20 pp., http://dx.doi.org/10.1029/2011JD016985.
  • [14] Lubin, D., Vogelmann, A. M., 2006. A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 439 (7075), 453-456, http://dx.doi.org/10.1038/nature04449.
  • [15] Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., Inall, M., 2015. Calving rates at tidewater glaciers vary strongly with ocean temperature. Nat. Commun. 6, 8566, 1-7, http://dx.doi.org/10.1038/ncomms9566.
  • [16] Manabe, S., Stouffer, R. J., 1980. Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J. Geophys. Res. 85 (C10), 5529-5554, http://dx.doi.org/10.1029/JC085iC10p05529.
  • [17] Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak, L., Serreze, M. C., White, J. W. C., 2010. Arctic amplification: can the past constrain the future? Quat. Sci. Rev. 29 (15-16), 1779-1790, http://dx.doi.org/10.1016/j.quascirev.2010.02.008.
  • [18] Nordli, Ö., Przybylak, R., Ogilvie, A. E. J., Isaksen, K., 2014. Longterm temperature trends and variability on Spitsbergen: the extended Svalbard Airport temperature series, 1898-2012. Polar Res. 33 (1), 21349, http://dx.doi.org/10.3402/polar.v33.21349#sthash.bFu0CZ1B.dpuf.
  • [19] Overland, J. E., Hanna, E., Hanssen-Bauer, I., Kim, B.-M., Kim, S.-J., Walsh, J., Wang, M., Bhatt, U., Thoman, R. L., 2015. Air Temperature, Arctic Report Card 2015; http://www.arctic.noaa.gov/Report-Card.
  • [20] Overland, J. E., Wang, M., 2013. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 40 (10), 2097-2101, http://dx.doi.org/10.1002/grl.50316.
  • [21] Piechura, J., Osinski, R., Petelski, T., Woźniak, S. B., 2002. Heat and Salt fluxes in the West Spitsbergen current area in summer. Oceanologia 44 (3), 307-321.
  • [22] Porter, D. F., Cassano, J. J., Serreze, M. C., Kindig, D. N., 2010. New estimates of the large-scale Arctic atmospheric energy budget. J. Geophys. Res. 115 (D08), 20 pp. http://dx.doi.org/10.1029/2009JD012653.
  • [23] Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Hoye, T. T., Ims, R. A., Jeppesen, E., Klein, D. R., Madsen, J., McGuire, A. D., Rysgaard, S., Schindler, D. E., Stirling, I., Tamstorf, M. P., Tyler, N. J. C., van der Wal, R., Welker, J., Wookey, P. A., Schmidt, N. M ., Aastrup, P., 2009. Ecological dynamics across the arctic associated with recent climate change. Science 325 (5946), 1355-1358, http://dx.doi.org/10.1126/science.1173113.
  • [24] Przybylak, R., Arazny, A., Nordli, O., Finkelnburg, R., Kejna, M., Budzik, T., Migała, K., Sikora, S., Puczko, D., Rymer, K., Rachlewicz, G., 2014. Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. Int. J. Climatol. 34 (14), 3702-3719, http://dx.doi.org/10.1002/joc.3937.
  • [25] R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.
  • [26] Screen, J. A., Simmonds, I., 2011. Erroneous Arctic temperaturę trends in the ERA-40 reanalysis: a closer look. J. Climate 24 (10), 2620-2627, http://dx.doi.org/10.1175/2010JCLI4054.1.
  • [27] Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., Holland, M. M., 2009. The emergence of surface-based Arctic amplification. Cryosphere 3 (1), 11-19, http://dx.doi.org/10.5194/tc-3-11-2009.
  • [28] Serreze, M. C., Barry, R. G., 2011. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77 (1-2), 85-96, http://dx.doi.org/10.1016/j.gloplacha.2011.03.004.
  • [29] Simmonds, I., 2015. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979-2013. Ann. Glaciol. 56 (69), 18-28.
  • [30] Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., Meier, W. N., 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39 (16), L16502, 7 pp. http://dx.doi.org/10.1029/2012GL052676.
  • [31] Thomson, J., Rogers, W. E., 2014. Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett. 41 (9), 3136-3140, http://dx.doi.org/10.1002/2014GL059983.
  • [32] Timmermans, M.-L., Proshutinsky, A., 2015. Sea Water Temperature, Arctic Report Card 2015; http://www.arctic.noaa.gov/Report-Card.
  • [33] Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., Woollen, J., 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131 (612), 2961-3012, http://dx.doi.org/10.1256/qj.04.176.
  • [34] Walczowski, W., Piechura, J., 2011. Influence of the West Spitsbergen current on the local climate. Int. J. Climatol. 31 (7), 1088-1093, http://dx.doi.org/10.1002/joc.2338.
  • [35] Walczowski, W., Piechura, J., Goszczko, I., Wieczorek, P., 2012. Changes in Atlantic water properties: an important factor in the European Arctic marine climate. ICES J. Mar. Sci. 69 (5), 864-869, http://dx.doi.org/10.1093/icesjms/fss068.
  • [36] Wang, M., Overland, J. E., 2009. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. 36 (7), L07502, 5 pp., http://dx.doi.org/10.1029/2009GL037820.
  • [37] Wang, M., Overland, J. E., 2012. A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys. Res. Lett. 39 (18), L18501, 6 pp., http://dx.doi.org/10.1029/2012GL052868.
  • [38] Weare, B. C., 1997. Comparison of NCEP—NCAR cloud radiative forcing reanalyses with observations. J. Climate 10 (9), 2200-2209, https://doi.org/10.1175/1520-0442(1997)010<2200:CONNCR>2.0.CO;2.
  • [39] Xue, Y., Reynolds, R. W., Banzon, V. F., Smith, T. M., Rayner, N. A., 2011. Global oceans: sea surface temperature. In: Arndt, D. S., Baringer, M. O., Johnson, M. R. (Eds.), State of the Climate in 2010. Bull. Amer. Meteorol. Soc., 92 (6), S78-S81.
  • [40] Xue, Y., Smith, T. M., Reynolds, R. W., 2003. Interdecadal changes of 30-yr SST normals during 1871-2000. J. Clim. 16 (10), 1601-1612.
  • [41] Zhang, J., Lindsay, R., Schweiger, A., Steele, M., 2013. The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett. 40 (4), 720-726, http://dx.doi.org/10.1002/grl.50190.
  • [42] Ziaja, W., Ostafin, Z., 2015. Landscape-seascape dynamics in the isthmus between Sørkapp Land and the rest of Spitsbergen: will a new big Arctic island form? Ambio 44 (4), 332-342, http://dx.doi.org/10.1007/s13280-014-0572-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78f3082a-a029-4a6e-99e2-b874b912e2e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.