PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Path Interval and Its Relevance to Cutting Force in Ball and Filleted End Milling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computerized milling process is widely used in product manufacturing. Although manufacturing has gradually become highly-automated, the selection of machining conditions still remains an ever-present challenge in the process. To provide some findings contributable for the process planning, this study focuses on ball and filleted end milling. After brief explanations were given to the path interval determinations in both milling processes, the experiments were conducted to verify and characterize each procedure. The results of computational procedures showed good agreement with the experimental ones. Then, material removal rate and cutting force were analytically proposed for effective selection of machining conditions. The following findings were obtained from the demonstrations with discussion. Ball end milling required relatively large cutting force in the first tool path even though the material removal rate was comparatively small. On the contrary, filleted end mill enabled us to maintain a moderate cutting force in the first tool path even if the material removal rate expanded with increasing tool radius.
Twórcy
  • Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, Japan
Bibliografia
  • 1. Armendia M., Ghassempouri M., Ozturk E., Peysson F. Twin-Control: A Digital Twin Approach to Improve Machine Tools Lifecycle. Springer; 2019.
  • 2. Armendia M., Peysson F., Euhus D. Twin-Control: A New Concept Towards Machine Tool Health Management. In Proc. of 3rd European Conference of the Prognostics and Health Management Society, Bilbao, Spain 2016. https://doi.org/10.36001/ phme.2016.v3i1.1584
  • 3. Christiand, Kiswanto G. Digital Twin Approach for Tool Wear Monitoring of Micro-Milling. Procedia CIRP. 2020; 93: 1532–1537.
  • 4. Sekine T. Study on Tool Condition Parameters Intended for Smart Tool Management in Filleted end Milling. Advances in Science and Technology Research Journal. 2021; 15: 108–116.
  • 5. Al-wswasi M., Ivanov A., Makatsoris H. A survey on smart automated computer-aided process planning (ACAPP) techniques. The International Journal of Advanced Manufacturing Technology. 2018; 97: 809–832.
  • 6. Nguyen T.K., Phung L.X., Bui N.T. Novel Integration of CAPP in a G-Code Generation Module Using Macro Programming for CNC Application. Machines. 2020; 8: 61–76.
  • 7. Mali R.A., Gupta T.V.K., Ramkumar J. A comprehensive review of free-form surface milling– Advances over a decade. Journal of Manufacturing Processes. 2021; 62: 132–167.
  • 8. Liang F., Kang C., Fang F. A review on tool orientation planning in multi-axis machining. International Journal of Production Research. 2020; 1–31.
  • 9. Honeycutt A., Schmitz T.L. Milling Bifurcations: A Review of Literature and Experiment. Journal of Manufacturing Science and Engineering. 2018; 140: 120801.
  • 10. Peng T., Xu X. Energy-efficient machining systems: a critical review. The International Journal of Advanced Manufacturing Technology. 2014; 72: 1389–1406.
  • 11. Moradnazhad M., Unver H.O. Energy efficiency of machining operations: A review. Proceedings of the Institution of Mechanical Engineers Part B J. Eng. Manufacture. 2016; 231: 1871–1889.
  • 12. Tuan L.H., Makhanov S.S. Accurate Scallop Evaluation Method Considering Kinematics of Five-axis Milling Machine for Ball-end Mill. Materials Science and Engineering. 2020; 840: 012006.
  • 13. Xu J., Zhang H., Sun Y. Swept surface-based approach to simulating surface topography in ballend CNC milling. The International Journal of Advanced Manufacturing Technology. 2018; 98: 107–118.
  • 14. Sekine T., Obikawa T. Normal-Unit-Vector-Based Tool Path Generation Using a Modified Local Interpolation for Ball-End Milling. Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2010; 4: 1246–1260.
  • 15. Obikawa T., Sekine T. A Higher-Order Formula of Path Interval for Tool-Path Generation. International Journal of Automation Technology. 2011; 5: 663–668.
  • 16. Liang F., Kang C., Lu Z., Fang F. Iso-scallop tool path planning for triangular mesh surfaces in multiaxis machining. Robotics and Computer-Integrated Manufacturing. 2021; 72: 102206.
  • 17. Sekine T., Obikawa T. Novel path interval determination in 5-axis flat end milling. Applied Mathematical Modelling. 2015; 39: 3459–3480.
  • 18. Zhang X., Zhang W., Zhang J., Pang B., Zhao W. Systematic study of the prediction methods for machined surface topography and form error during milling process with flat-end cutter. Proceedings of the Institution of Mechanical Engineers Part B. J. Eng. Manufacture. 2019; 233: 226–242.
  • 19. Sekine T., Obikawa T., Hoshino M. Establishing a Novel Model for 5-Axis Milling with Filleted End Mill. Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2012; 6: 296–309.
  • 20. Bedi S., Ismail F., Mahjoob M.J., Chen Y. Toroidal Versus Ball Nose and Flat Bottom End Mills. International Journal of Advanced Manufacturing Technology. 1997; 13: 326–332.
  • 21. Sekine T. A Computational Algorithm for Path Interval Determination in Multi-Axis Filleted End Milling. Advances in Science and Technology Research Journal. 2020; 14: 198–205.
  • 22. Quinsat Y., Lavernhe S., Lartigue C. Characterization of 3D surface topography in 5-axis milling. Wear. 2011; 271: 590–595.
  • 23. Hendriko H. A hybrid analytical and discrete based methodology to calculate path scallop of helical toroidal cutter in fiveaxis milling. FME Trans. 2018; 46: 552–559.
  • 24. Sekine T., Kameya K. Remarkable characteristics of a novel path interval determination in filleted end milling. Journal Européen des Systèmes Automatisés. 2021; 54: 461–468.
  • 25. Khorasani A.M., Yazdi M.R.S., Safizadeh M.S. Analysis of machining parameters effects on surface roughness: a review. International Journal of Computational Materials Science and Surface Engineering. 2012; 5: 68–84.
  • 26. Habibi M., Kilic Z.M., Altintas Y. Minimizing Flute Engagement to Adjust Tool Orientation for Reducing Surface Errors in Five-Axis Ball End Milling Operations. Journal of Manufacturing Science and Engineering. 2021; 143: 021009.
  • 27. Sekine T. Study on Tool Condition Parameters Intended for Smart Tool Management in Filleted End Milling. Advances in Science and Technology Research Journal. 2021; 15: 108–116.
  • 28. Yang M., Park H. The prediction of cutting force in ball-end milling. International Journal of Machine Tools and Manufacture. 1991; 31: 45–54.
  • 29. Lee P., Altintaş Y. Prediction of ball-end milling forces from orthogonal cutting data. International Journal of Machine Tools and Manufacture. 1996; 36: 1059–1072.
  • 30. Budak E., Ozlu E. Development of a thermomechanical cutting process model for machining process simulations. CIRP Annals. 2008; 57: 97–100.
  • 31. Wojciechowski S., Maruda R.W., Nieslony P., Krolczyk G.M. Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences. 2016; 119: 360–369.
  • 32. Park H., Qi B., Dang D.V., Park D.Y. Development of smart machining system for optimizing feedrates to minimize machining time. Journal of Computational Design and Engineering. 2018; 5: 299–304.
  • 33. Quintana G., de Ciurana J., Ribatallada J. Surface Roughness Generation and Material Removal Rate in Ball End Milling Operations. Materials and Manufacturing Processes. 2010; 25: 386–398.
  • 34. Sousa V.F.C., Silva F.J.G., Fecheira J.S., Lopes H.M., Martinho R.P., Casais R.B., Ferreira L.P. Cutting Forces Assessment in CNC Machining Processes: A Critical Review. Sensors. 2020; 20: 4536.
  • 35. Dynomax. Spindle component facts and engineering data. Part two. https://dynospindles.com/vault/ technical/Book-of-Spindles-Part-2.pdf
  • 36. Sanyo chemical industry Ltd. Synthetic Wood for Modeling & Tooling. https://www.sanyo-chemical. co.jp/eng/wp/wp-content/uploads/2021/04/PC_ No.115.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78ec534b-e632-4e72-baf9-85e54b8f8616
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.