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Ab stract .  The simulation method of queuing system for 
traffic simulation in telecommunication system is studied. 
Different types of input flow are considered: uniform 
distributed, Poisson distributed and self-similar flow with 
different Herst indexes. 
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Poisson flow. 

INTRODUCTION 

When simulating a telecommunication system ana-
lytical methods [9] of queuing systems theory (QS), 
time-probability graphs, differential and difference 
equations and colored Petri nets are widely used [1, 2, 
11, 18, 19, 21, 22]. These methods enable the analytical 
solutions of rather complex systems [17], but provided 
that the input flow of QS is described by the probability 
model with uniform or Poisson distributions [16].  

At the same time numerous scientific researches 
devoted to the description of experimentally found 
timing diagrams of the traffic intensity, particularly in 
the Internet, go that the input process is more 
complicated. Thus, for traffic simulation in telecommu-
nication system it is better to choose the simulation 
method of QS, which as opposed to analytical methods 
of QS simulation (suitable for flows with uniform 
distribution) has an important feature that is the ability 
to select any probability model of the input flow [8]. 

MATERIALS AND METHODS 

Having analyzed the scientific researches, we 
concluded that it is necessary to simulate traffic of a 

telecommunication system with different types of input 
flows [8, 9].  

Topology of a telecommunication network which 
uses multipath routing of the Internet traffic and for 
which the simulation was conducted is shown in Fig. 1. 

 

 
Fig. 1. Mesh network topology with multipath routing 

 
Fig. 2. Multichannel network model with routing and buffering 
of requests 

Traffic simulation was conducted for flows with 
uniform and Poisson distributions and also for self-
similar flows with different self-similarity coefficients.  
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Poisson flow (Fig. 3) is a random process, 
characterized by the probability of the number of 
requests [16]: 
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where: N  – the number of requests,   – the time of in-
coming requests,  ,p N   – the probability of N  requ-
ests incoming over time  ,   – the intensity of flow. 
 

 
 
Fig. 3. Poisson distribution for different values of intensity 
 

For self-similar flows generation the model of 
fractal Brownian signal (FBS) was used that is described 
by the following formula [10, 11, 20]: 
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where: H  – the Hurst parameter, n  – the time scaling 
parameter of the self-similar signal (minimal value of 

this parameter is equal to 1),    HX i  – the value of 

FBS sample with number “i”,  i  – the number from 
the set with normal distribution which has zero 
mathematical expectation and dispersion equals to one. 

Generation of real numbers  i  with normal 
distribution with through Box-Miller algorithm is based 
on using of two different linear congruent generators: 

 1, 1 1 1, 1 modn nx a x d N    ,               (3) 

 2, 1 2 2, 2 modn nx a x d N    ,                (4) 

where: n  – index of current iteration, 
1,nx , 2,nx , 1, 1nx  , 2, 1nx   – numbers obtained by the first 

and second  congruent generators  in the current and 
previous   iterations respectively, 1 1, ,a d N  and   

2 2, ,a d N  – parameters of the first and second  
congruent generators respectively, which should be 
mutually prime and rather  big numbers. 

The sequences of real numbers generated by Eq. (3) 
and Eq. (4) are transformed according to the following 
transforming [23]: 
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where: 1,nx , 2,nx  – uniformly distributed pseudorandom 

numbers, 1,ny , 2,ny  – pseudorandom numbers with 
Gaussian distribution. 
 

 

Fig. 4a. Timing diagrams of FBS with different Hesrt indexies 
and the time scaling factors: (H=0,1; n=1), (H=0,1; n=50), 
(H=0,9; n=1), (H=0,9; n=50) – a), b), c) and d) respectively 

 

Fig. 4b. Timing diagrams of FBS with different Hesrt indexies 
and the time scaling factors: (H=0,1; n=1), (H=0,1; n=50), 
(H=0,9; n=1), (H=0,9; n=50) – a), b), c) and d) respectively 

 

Fig. 4c. Timing diagrams of FBS with different Hesrt indexies 
and the time scaling factors: (H=0,1; n=1), (H=0,1; n=50), 
(H=0,9; n=1), (H=0,9; n=50) – a), b), c) and d) respectively 

 

Fig. 4d. Timing diagrams of FBS with different Hesrt indexies 
and the time scaling factors: (H=0,1; n=1), (H=0,1; n=50), 
(H=0,9; n=1), (H=0,9; n=50) – a), b), c) and d) respectively 
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If the sum of the squares of numbers 1,nx  and 2,nx  
in Eq. (5) is greater than one, the calculation by Eq. (6) 
and Eq. (7) are not performed, and thus starts the next 
iteration. 

Time diagram of FBS generated according to Eq. 
(2) indicates their chaotic behaviors (Fig. 4) [3, 4, 13, 
14, 15]. 

The essence of the proposed traffic simulation 
method with self-similar distribution is the following: 

 from generated values in accordance with Eq. (2) 
we subtract the minimal value of the same numerical 
series that makes it possible to obtain the graph with 
nonnegative values; 

 we multiply terms of created numerical series by 
the same coefficient, the value of which we select 
provided that obtained numerical series had equal 
intensity values; 

 we round obtained values to the integer number, 
as they represent the number of requests which come to 
the network over one time interval that is similar for all 
types of traffic; 

 thus, we obtained the specified flow intensity, which 
is simulated by integer numbers during each time iteration; 

 time spaces between transmission of requests to 
systems over one time iteration are estimated inversely 
proportional to the number of req. over one iteration. 

RESULTS AND DISCUSSION 

The first result obtained in our research was 
calculation of the requests mean service time in the 
network depending on the network load. The calculation 
was done for different flow intensities. We determined 
that for intensity value 50,9 10 requests/hour balancing 
of the process of req. transmission is observed: so mean 
time does not depend on the number of req.  

We also found out that the traffic with different 
types of distribution would be transmitted differently 
through the network (Fig. 5). 

 
Fig. 5a. The dependence of traffic transmission time on the 
input flow intensity that is equal to 50,9 10  requests/hour with 
different distributions – uniform, Poisson and self-similar 
when H=0,3: a), b) and c) respectively 

 
Fig. 5b. The dependence of traffic transmission time on the 
input flow intensity that is equal to 50,9 10  requests/hour with 
different distributions – uniform, Poisson and self-similar 
when H=0,3: a), b) and c) respectively 

 
 
Fig. 5c. The dependence of traffic transmission time on the 
input flow intensity that is equal to 50,9 10  requests/hour with 
different distributions – uniform, Poisson and self-similar 
when H=0,3: a), b) and c) respectively 

 
Herewith, maximum value of the requests mean 

service time is for Poisson traffic (Fig. 5). The 
calculated average value of the req. mean service time in 
the network for flows with different distribution is 
shown in Table 1. 

Table 1. Requests mean service time in the network. 

Type of traffic Req. mean service time in the network, 
sec. 

Uniform  0,033 
Poisson  0,041 
Self-similar 0,039 

 
We also determined some relation of self-similar 

traffic transmission for different Hurst exponents (Fig. 
6). From the obtained results of the research of the 
dependence of self-similar traffic transmission time  for 
different Hurst exponents it follows that minimum 
average value of self-similar traffic transmission occurs 
provided that the number of requests is equal to 270, 
120…270, and 270 for H=0.1; 0,5 and 0,9 respectively. 
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Fig. 6a. The dependence of characteristics of the output flow 
when flow intensity equals to  50,9 10  requests/hour for self-
similar input traffic with Hurst exponents 0,1; 0,5, 0,9: a) b) 
and c) respectively 

 
Fig. 6b. The dependence of characteristics of the output flow 
when flow intensity equals to  50,9 10  requests/hour for self-
similar input traffic with Hurst exponents 0,1; 0,5, 0,9: a) b) 
and c) respectively 

 
Fig. 6c. The dependence of characteristics of the output flow 
when flow intensity equals to  50,9 10  requests/hour for self-
similar input traffic with Hurst exponents 0,1; 0,5, 0,9: a) b) 
and c) respectively 

If we decrease the input traffic intensity to 31,8 10  
the characteristics of transmission through the network 
of flows with Poisson and self-similar distributions are 

identical and they differs from the characteristic for 
uniform distribution. We can make such conclusion on 
the basis of data shown in Fig. 7. 

 

 
Fig. 7a. Requests mean service time in the network for 
uniform, Poisson and self-similar traffics when the intensity of 
the input flow is equal to 31,8 10  req./hour: a) and b) 
respectively 

 
Fig. 7b. Requests mean service time in the network for 
uniform, Poisson and self-similar traffics when the intensity of 
the input flow is equal to 31,8 10  req./hour: a) and b) 
respectively 

CONCLUSIONS 

1. On the basis of the conducted simulation we 
determined that there are some divergences between 
traffics simulated by different flows. In particular, the 
results obtained for the flow with uniform distribution 
differ from the results obtained when simulating the 
traffic by the self-similar and Poisson flows. Herewith, 
flows with self-similar and Poisson distributions are 
identical when the intensity is equal to 31,8 10  
req./hour.  

2. If the intensity is increased to 50,9 10  req./hour  
the difference in calculating of such average 
transmission time of one req. for flows with self-similar 
and uniform distributions is equal to 38 10 seconds, 
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and for flows with self-similar and Poisson distributions 
the difference is equal to 32,0 10  seconds. In our 
opinion this is the substantial divergence for the Poisson 
and self-similar flows.  

3. We also determined that there is no the 
substantial dependence of the mean service time on the 
self-similarity coefficient (Hurst exponent) of the flow, 
but processes of transmission self-similar flows with 
different  Hurst exponent are differ from each other 
considerably.  
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