PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tailoring the mechanical properties of hypereutectic in situ Al–Mg2Si composites via hybrid TiB2 reinforcement and hot extrusion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microstructure and mechanical properties of Al-15Mg 2 Si-xTiB 2 hybrid composites in the as-cast and wrought conditions were studied. TiB 2 addition led to a significant refinement and modification of primary Mg2Si particles (up to 3 wt% TiB 2 addition) via the heterogeneous nucleation mechanism, which improved the as-cast tensile properties. Further additions led to the appearance of coarse needle-shaped Al 3Ti particles with the consequent deterioration of tensile properties. Hot deformation by extrusion process and elevated-temperature exposure resulted in the fragmentation, dispersion, and spheroidization of pseudo-eutectic Mg 2 Si constituents, which led to a significant enhancement of tensile properties. The ultimate tensile strength of the extruded Al-15Mg 2 Si-3TiB 2 composite was 285 MPa with the total elongation of ~ 8%, which revealed a good strength-ductility balance. The corresponding value for the as-cast Al-15Mg 2 Si composite was only 198 MPa%. Accordingly, this study revealed that the presence of optimum amount of TiB 2 combined with high-temperature thermo-mechanical processing could remarkably improve the mechanical properties of the hypereutectic Al-Mg-Si composites in terms of strength-ductility balance, quality index, and tensile toughness.
Rocznik
Strony
art. no. e87, 1--9
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
  • Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran
  • School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran
Bibliografia
  • 1. Sharma A, Gupta G, Paul J. A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nano-composites fabricated via friction stir processing. Carbon Lett. 2021;31:339-370.
  • 2. Rajak DK, Pagar DD, Kumar R, Pruncu CI. Recent progress of reinforcement materials: a comprehensive overview of composite materials. J Market Res. 2019;8:6354-74.
  • 3. Ayar VS, Sutaria MP. Comparative evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Int J Metalcasting. 2021. https://doi.org/10.1007/s40962-020-00539-7.
  • 4. Pramod SL, Bakshi SR, Murty BS. Aluminum-based cast in situ composites: a review. J Mater Eng Perform. 2015;24:2185-2207.
  • 5. Sharma A, Paul J. A review on the fabrication of in situ metal matrix composite during friction stir welding. Mater Sci Forum. 2020;978:191-201.
  • 6. Sharma DK, Mahant D, Upadhyay G. Manufacturing of metal matrix composites: a state of review. Mater Today. 2020;26:506-519.
  • 7. Sharifzadeh M, Shaeri MH, Taghiabadi R, Mozaffari F, Ebrahimi M. Investigating the combination effect of warm extrusion and multi-directional forging on microstructure and mechanical properties of Al–Mg 2 Si composites. Arch Civil Mech Eng. 2020;20:33.
  • 8. Wang D, Zhang H, Han X, Shao B, Li L, Cui J. The analysis of strontium modification on microstructure and mechanical properties of Al-25% Mg 2 Si in situ composite. J Mater Eng Perform. 2017;26:4415-23.
  • 9. Zamani R, Mirzadeh H, Emamy M. Evaluating the effect of hot-rolling reduction on the mechanical properties of in situ formed aluminum-magnesium-silicon (Al-Mg 2 Si) Composites. Adv Eng Mater. 2019;21:1900609.
  • 10. Qin QD, Zhao YG, Zhou W, Cong PJ. Effect of phosphorus on microstructure and growth manner of primary Mg 2 Si crystal in Mg 2 Si/Al composite. Mater Sci Eng A. 2007;447:186-191.
  • 11. Zamani R, Mirzadeh H, Emamy M. Mechanical properties of a hot deformed Al-Mg2 Si in-situ composite. Mater Sci Eng A. 2018;726:10-17.
  • 12. Zhou MY, Ren LB, Fan LL, Zhang YWX, Lu TH, Quan GF, Gupta M. Progress in research on hybrid metal matrix composites. J Alloys Compd. 2020;838:155274.
  • 13. Nie J, Wang F, Li YS, Liu YF, Liu XF, Zhao YH. Microstructure and mechanical properties of Al-TiB 2 /TiC in situ composites improved via hot rolling. Trans Nonferrous Metals Soc China. 2017;27:2548-54.
  • 14. Rajan BM, Ramabalan S, Dinaharan I, Vijay SJ. Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composites. Arch Civil Mech Eng. 2014;14:72-79.
  • 15. Chen F, Chen Z, Mao F, Wang T, Cao Z. TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater Sci Eng A. 2015;625:357-368.
  • 16. Du R, Yuan D, Li F, Zhang D, Wu S, Lü S. Effect of in-situ TiB2 particles on microstructure and mechanical properties of Mg2 Si/Al composites. J Alloy Compd. 2019;776:536-542.
  • 17. Ma SM, Zhang P, Ji G, Chen Z, Sun GA, Zhong SY, Ji V, Wang HW. Microstructure and mechanical properties of friction stir processed Al-Mg-Si alloys dispersion-strengthened by nano-sized TiB 2 particles. J Alloy Compd. 2014;616:128-136.
  • 18. Nandam SH, Murty BS, Sankaran S. Influence of TiB2 addition on the precipitation kinetics in Al-7Si-0.3Mg in situ TiB2 composites. Metall Mater Trans A. 2015;46:2844-9.
  • 19. Taghiabadi R, Mahmoudi M, Emamy M, Campbell J. Effect of casting techniques on tensile properties of cast aluminium alloy (Al-Si-Mg) and TiB2 containing metal matrix composite. Mater Sci Technol. 2003;19:497-502.
  • 20. Wang P, Gammer C, Brenne F, Niendorf T, Eckert J, Scudino S. A heat treatable TiB2 /Al-3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical properties. Compos Part B. 2018;147:162-168.
  • 21. Xie X, Chen C, Chen Z, Wang W, Yin S, Ji G, Liao H. Achieving simultaneously improved tensile strength and ductility of a nano-TiB 2 /AlSi10Mg composite produced by cold spray additive manufacturing. Compos Part B. 2020;202:108404.
  • 22. Mehranpour MS, Heydarinia A, Emamy M, Mirzadeh H, Koushki A, Razi R. Enhanced mechanical properties of AZ91 magnesium alloy by inoculation and hot deformation. Mater Sci Eng A. 2021;802:140667.
  • 23. Li C, Liu X, Zhang G. Heterogeneous nucleating role of TiB2 or AlP/TiB 2 coupled compounds on primary Mg2Si in Al-Mg-Si alloys. Mater Sci Eng, A. 2008;497:432-437.
  • 24. Turnbull D, Vonnegut B. Nucleation catalysis. Ind Eng Chem. 1952;44:1292-8.
  • 25. Mirzadeh H. High strain rate superplasticity via friction stir processing (FSP): a review. Mater Sci Eng A. 2021;819:141499.
  • 26. Khorasani F, Emamy M, Malekan M, Mirzadeh H, Pourbahari B, Krajnák T, Minárik P. Enhancement of the microstructure and elevated temperature mechanical properties of as-cast Mg-Al 2 Ca-Mg 2 Ca in-situ composite by hot extrusion. Mater Charact. 2019;147:155-164.
  • 27. Hesami L, Taghiabadi R, Ghoncheh MH. Study on the modification effect of copper on Al-15Mg 2 Si composite. Mater Chem Phys. 2022;276:125323.
  • 28. Tiryakioglu M, Campbell J, Alexopoulos ND. Quality indices for aluminum alloy castings: a critical review. Metall Mater Trans B. 2009;40:802-811.
  • 29. Barri N, Salasel AR, Abbasi A, Mirzadeh H, Emamy M, Malekan M. A new intermetallic phase formation in Mg-Si-Ni magnesium-based in-situ formed alloys. Vacuum. 2019;164:34-54.
  • 30. Afsharnaderi A, Lotfpour M, Mirzadeh H, Emamy M, Malekan M. Enhanced mechanical properties of as-cast AZ91 magnesium alloy by combined RE-Sr addition and hot extrusion. Mater Sci Eng A. 2020;792:139817.
  • 31. Pourbahari B, Mirzadeh H, Emamy M. Elucidating the effect of intermetallic compounds on the behavior of Mg-Gd-Al-Zn magnesium alloys at elevated temperatures. J Mater Res. 2017;32:4186-95.
  • 32. Marjani O, Emamy M, Mirzadeh H. Mechanical behavior of as-cast and extruded Mg-Si-Ni-Ca magnesium alloys. J Mater Eng Perform. 2020;29:7728-35.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78dc981d-a0f6-4e2a-8d78-178f544f9a1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.