Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work demonstrates the study of the numerical modelling and a design of a compact energy generator based on green hydrogen. This generator aims allowing the energy storage, electricity, cold and heat productions as well as a supply the energy for the production of the sanitary hot water. The generator is considered to be powered by 30 solar cells panels and will mainly consist of a Proton Exchange Membrane (PEM) electrolyzer compiled with a Metal Hydride (MH) tank, a PEM fuel cell, and a system of heat exchangers sized to recover the heat from the electrolyzer, PEM fuel cell and MH tank. Furthermore, the generator will contain an adsorber to manage air conditioning (cooling and heating) and a production of the sanitary hot water. A converter block is included in the generator, in particular, a Buck-booster to raise the voltage of the solar panels and the DC-AC converter for the electricity consumption in the household. The desorption of the hydrogen contained in the tank MH will take place using the heating resistance. In overall, the designed generator is foreseen to have a dimension of 1800 × 1000 × 500 mm and its role is to allow integration of the hydrogen energy for the tertiary and residential sectors. As such it is a suitable choice of components for the cost reduction and high yield hydrogen production, storage, and consumption.
Wydawca
Czasopismo
Rocznik
Tom
Strony
66--79
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
- Department of Thermal Engineering, Faculty of Technology Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
autor
- Department of Thermal Engineering, Faculty of Technology Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
autor
- Department of Thermal Engineering, Faculty of Technology Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
autor
- Department of Thermal Engineering, Faculty of Technology Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
Bibliografia
- [1] Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Climate Change 2021: The Physical Science Basis Summary for Policymakers, 2021. https://reliefweb.int/report/world/climate-change-2021-physical-science-basis.
- [2] M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems, Renew. Sustain. Energy Rev. 75 (2017) 1187–1197. https://doi.org/10.1016/j.rser.2016.11.102.
- [3] A.B. Gallo, J.R. Simões-Moreira, H.K.M. Costa, M.M. Santos, E. Moutinho dos Santos, Energy storage in the energy transition context: A technology review, Renew. Sustain. Energy Rev. 65 (2016) 800–822. https://doi.org/10.1016/j.rser.2016.07.028.
- [4] M. Kayfeci, A. Keçebaş, Hydrogen storage, in: Sol. Hydrog. Prod., Elsevier, 2019: pp. 85–110. https://doi.org/10.1016/B978-0-12-814853-2.00004-7.
- [5] GEA34805 (03/22), Hydrogen for power generation; Experience, requirements, and implications for use in gas turbines, (2022).
- [6] Fuel Cells and Hydrogen 2 Joint Undertaking, A sustainable pathway for the European Energy Transition Hydrogen Roadmap Europe, 2019.
- [7] D. Parra, M. Gillott, G.S. Walker, Design, testing and evaluation of a community hydrogen storage system for end user applications, Int. J. Hydrogen Energy. 41 (2016) 5215–5229. https://doi.org/10.1016/j.ijhydene.2016.01.098.
- [8] K. Maeda, M. Suzuki, H. Aki, R&D and deployment of residential fuel cell cogeneration systems in Japan, in: 2008 IEEE Power Energy Soc. Gen. Meet. - Convers. Deliv. Electr. Energy 21st Century, IEEE, 2008: pp. 1–5. https://doi.org/10.1109/PES.2008.4596046.
- [9] P.M. Laince, T. Abdelwahed, O.E. Akpoviroro, R. Nabila, Mathematical modeling of re-electrification by green hydrogen storage through the PEM fuel cell integrating a 10-year economic study applied to a hotel, E3S Web Conf. 229 (2021) 01038. https://doi.org/10.1051/e3sconf/202122901038.
- [10] M.. L. Pierre, T. Abdelwahed, R. Nabila, Implementation of an Advanced PEM Hydrogen Storage System Based Cogeneration Using Photovoltaic System in a Building, in: 2020 Int. Conf. Control. Autom. Diagnosis, IEEE, 2020: pp. 1–6. https://doi.org/10.1109/ICCAD49821.2020.9260552.
- [11] G. Zubi, Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain, Energy Policy. 39 (2011) 8070–8077. https://doi.org/10.1016/j.enpol.2011.09.068.
- [12] B. Deboyser, La toute première batterie domestique à hydrogène : quel est son intérêt ?, (2021). https://www.revolution-energetique.com/la-toute-premiere-batterie-domestique-a-hydrogene-quel-est-son-interet/.
- [13] Techfine 24v 48v Hybrid Solar Inverter 1/2/3/4/Skva Off Grid Mppt Solar Power Inverter - Buy Hybrid Solar Inverter Product on Alibaba.com, https://french.alibaba.com/product-detail/techfine-24v-48v-hybrid-solar-inverter-1-2-3-4-5kva-off-grid-mppt-solar-power-inverter-1600209524603.html?spm=a2700.galleryofferlist.normal_offer.d_image.49d22addEBzw3O&s=p., (2021).
- [14] G-HFCS-2kW25V (2kW Hydrogen Fuel Cell Power Generator), https://www.fuelcellstore.com/g-hfcs-2kw25v-1kw-hydrogen-fuel-cell-power-generator, (2021).
- [15] PEM-Elektrolyse-Stack S30: H-TEC Systems Produkte, https://www.h-tec.com/en/products/, (2021).
- [16] Techfine Pur Onde Sinusoidale 8kw Ondeuleur Hybrid 10kva Onduleur 48kv Onduleur Solaire Systeme-Buy 8kw Hybrid Inverter 10 kva Power Inverter Solar Power Inverter System Product on Alibaba.com, https://french.alibaba.com/product-detail/techfine-pure-sine-wave-8kw-hybrid-inverter-10kva-power-inverter-48v-solar-power-inverter-system-1600196276975.html?spm=a2700.galleryofferlist.normal_offer.d_image.26121e7fqUESJT&s=p., (2021).
- [17] A. B. Cultura II and Z. M. Salameh, “Design and Analysis of a 24 Vdc to 48 Vdc Bidirectional DC-DC Converter Specifically for a Distributed Energy Application,” Energy Power Eng., vol. 04, no. 05, pp. 315–323, 2012, doi: 10.4236/epe.2012.45041.
- [18] M. Marinelli, M. Santarelli, Hydrogen storage alloys for stationary applications, J. Energy Storage. 32 (2020) 101864. https://doi.org/10.1016/j.est.2020.101864.
- [19] M.V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, V. Yartys, The use of metal hydrides in fuel cel applications, Prog. Nat. Sci. Mater. Int. 27 (2017) 3–20. https://doi.org/10.1016/j.pnsc.2017.01.008.
- [20] G. Karagiorgis, C.N. Christodoulou, H. von Storch, G. Tzamalis, K. Deligiannis, D. Hadjipetrou, M. Odysseos, M. Roeb, C. Sattler, Design, development, construction and operation of a novel metal hydride compressor, Int. J. Hydrogen Energy. 42 (2017) 12364–12374. https://doi.org/10.1016/j.ijhydene.2017.03.195.
- [21] B.P. Tarasov, P.V. Fursikov, A.A. Volodin, M.S. Bocharnikov, Y.Y. Shimkus, A.M. Kashin, V.A. Yartys, S. Chidziva, S. Pasupathi, M.V. Lototskyy, Metal hydride hydrogen storage and compression systems for energy storage technologies, Int. J. Hydrogen Energy. 46 (2021) 13647–13657. https://doi.org/10.1016/j.ijhydene.2020.07.085.
- [22] D. Brayton, A. Narvaez, Low Cost, Metal Hydride Based Hydrogen Storage System for Forklift Applications (Phase II), 2013.
- [23] M. V. Lototskyy, M. Davids, T.I. Wafeeq, Y. V. Klochko, B.S. Sekhar, S. Chidziva, F. Smith, D. Swanepoel, B.G. Pollet, Metal hydride systems for hydrogen storage and supply for stationary and automotive low temperature PEM fuel cell power modules, Int. J. Hydrogen Energy. 40 (2015) 11491–11497. https://doi.org/10.1016/j.ijhydene.2015.01.095.
- [24] M. Fernandez, B. Cener, Heating and cooling energy demand and loads for building types in different countries of the EU, March (2014).
- [25] F. Foudazi, M. Mugendi, N.A. Rithaa, Sustainable solutions for cooling systems in residential buildings case study in the Western Cape Province, South Africa, 2010. https://www.thesustainabilitysociety.org.nz/conference/2010/papers/Foudazi-M’Rithaa.pdf.
- [26] Q. Pan, J. Peng, R. Wang, Experimental study of an adsorption chiller for extra low temperature waste heat utilization, Appl. Therm. Eng. 163 (2019) 114341. https://doi.org/10.1016/j.applthermaleng.2019.114341.
- [27] B.B. Saha, A. Akisawa, T. Kashiwagi, Silica gel water advanced adsorption refrigeration cycle, Energy. 22 (1997) 437–447. https://doi.org/10.1016/S0360-5442(96)00102-8.
- [28] B.B. Saha, S. Koyama, T. Kashiwagi, A. Akisawa, K.C. Ng, H.T. Chua, Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system, Int. J. Refrig. 26 (2003) 749–757. https://doi.org/10.1016/S0140-7007(03)00074-4.
- [29] M. Bilgili, Ö.E. Ataer, Numerical analysis of hydrogen absorption in a P/M metal bed, Powder Technol. 160 (2005) 141–148. https://doi.org/10.1016/j.powtec.2005.08.018.
- [30] B.. Saha, A. Akisawa, T. Kashiwagi, Solar/waste heat driven two-stage adsorption chiller: the prototype, Renew. Energy. 23 (2001) 93–101. https://doi.org/10.1016/S0960-1481(00)00107-5.
- [31] B. Han, A. Chakraborty, Adsorption characteristics of methyl-functional ligand MOF-801 and water systems: Adsorption chiller modelling and performances, Appl. Therm. Eng. 175 (2020) 115393. https://doi.org/10.1016/j.applthermaleng.2020.115393.
- [32] GEA33861 (02/2019), Power to gas: Hydrogen for power generation, (2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78d8f523-583e-4dc8-9671-62020a25f15f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.