Identyfikatory
Warianty tytułu
Analiza niezawodnościowa struktur rekonfigurowalnego systemu produkcyjnego z wykorzystaniem metod symulacji komputerowej
Języki publikacji
Abstrakty
Choosing the right production structure (configuration) is one of the most important steps in the process of designing a reconfigurable manufacturing system (RMS). Whether or not a production process to be executed is capable of achieving the assumed performance parameters depends, among others, on the reliability of the machines and technological devices that make up the system under design. Because the individual components of a manufacturing system have different levels of reliability, the reliability of the system as a whole depends to a large extent on the way in which they are configured. This article discusses the process of selecting the structure of a manufacturing system with changing machine reliability, which allows to accommodate these changes to maintain the stability of the production process. The focus of the study was a manufacturing system under design dedicated to the machining of body parts. The experiments were carried out using analytical methods and computer simulation methods. Simulations were performed using Enterprise Dynamics software.
Wybór odpowiedniej struktury produkcyjnej (konfiguracji) stanowi jeden z ważniejszych kroków w procesie projektowania rekonfigurowalnego systemu produkcyjnego (RMS). Możliwość osiągnięcia zakładanych parametrów wydajnościowych planowanego do realizacji procesu produkcyjnego jest uzależniona m.in. od stopnia niezawodności maszyn i urządzeń technologicznych wchodzących w skład projektowanego systemu. Zróżnicowany poziom niezawodności poszczególnych elementów systemu produkcyjnego powoduje, iż niezawodność systemu jako całości w dużej mierze zależy od sposobu ich konfiguracji. W niniejszym artykule przedstawiono proces wyboru struktury systemu produkcyjnego pod kątem możliwości zachowania stabilności procesu produkcyjnego wraz ze zmianą stopnia niezawodności maszyn technologicznych wchodzących w skład systemu. Jako obiekt badań przyjęto projektowany system produkcyjny dedykowany do obróbki części klasy korpus. Badania przeprowadzono z wykorzystaniem metod analitycznych oraz metod symulacji komputerowej. Jako narzędzie symulacji wykorzystany został system Enterprise Dynamics.
Czasopismo
Rocznik
Tom
Strony
90--102
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering Lublin University of Technology ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Andersen A-L, Larsen J K, Brunoe T D, Nielsen K, Ketelsen C. Critical enablers of changeable and reconfigurable manufacturing and their industrial implementation. Journal of Manufacturing Technology Management 2018; 29(6): 983-1002, http://dx.doi.org/10.1108/ JMTM-04-2017-0073.
- 2. Antosz K. Maintenance – identification and analysis of the competency gap. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (3): 484–494, http://dx.doi.org/10.17531/ein.2018.3.19.
- 3. Anzanello M J, De Oliveira Lemos F. Reliability Evaluation and Component Allocation in Series and Parallel Systems Consisting of Non-Identical Three-State Component. XIV International Conference on Industrial Engineering and Operations Management. The integration of productive chain with an approach to sustainable manufacturing. Rio de Janeiro, Brazil, 13 to 16 October 2008.
- 4. Battini D, Faccio M, Ferrari E, Persona A, Sgarbossa F. Design configuration for a mixed model assembly system in case of low product demand. International Journal of Advanced Manufacturing Technology 2007; 34(1-2): 188-200, http://dx.doi.org/10.1007/ s00170-006-0576-5.
- 5. Bensmaine A, Dahane M, Benyoucef L. A non-dominated sorting genetic algorithm based approach for optimal machines selection in reconfigurable manufacturing environment. Computers and Industrial Engineering 2013; 66(3): 519-524, http://dx.doi.org/10.1016/j. cie.2012.09.008.
- 6. Bi Z, Lang S, Shen W. Reconfigurable manufacturing systems: the state of the art. International Journal of Production Research 2008; 46(4): 967-992, http://dx.doi.org/10.1080/00207540600905646.
- 7. Cohen Y, Faccio M, Galizia F G, Mora C, Pilati F. Assembly system configuration through Industry 4.0 principles: the expected change in the actual paradigms. IFAC PapersOnLine 2017; 50(1): 14958-14963, http://dx.doi.org/10.1016/j.ifacol.2017.08.2550.
- 8. Dahane M, Menyoucef L. An adapted NSGA-II algorithm for a Reconfigurable manufacturing system (RMS) design under machines reliability constraints. Metaheuristics for Production Systems; 60: 109-130, http://dx.doi.org/10.1007/978-3-319-23350-5_5.
- 9. Daniewski K, Kosicka E, Mazurkiewicz D. Analysis of the Correctness of Determination of the Effectiveness of Maintenance Service Actions. Management and Production Engineering Review 2018; 9 (2): 20-25, http://dx.doi.org/10.24425/119522.
- 10. Delorme X, Malyutin S, Dolgui A. A multi-objective approach for design of reconfigurable transfer lines. IFAC-PapersOnLine 2016, 49(12): 509-514, http://dx.doi.org/10.1016/j.ifacol.2016.07.675.
- 11. Dou J, Dai X, Meng Z. A GA-based approach for optimizing single-part flow-line configurations of RMS, Journal of Intelligent Manufacturing 2011; 22(2): 301-317, http://dx.doi.org/10.1007/s10845-009-0305-7.
- 12. Dou J, Dai X, Meng Z. Optimisation of multi-part flow-line configuration of reconfigurable manufacturing system using GA. International Journal of Production Research 2010; 48(14): 4071-4100, http://dx.doi.org/10.1080/00207540903036305.
- 13. ElMaraghy H A. Flexible and Reconfigurable manufacturing systems paradigms. International Journal of Manfucaturing Systems 2005; 17(4): 261-276, http://dx.doi.org/10.1007/s10696-006-9028-7.
- 14. Esmaeilian B, Behdad S, Wang B. The evolution and future of manufacturing: A review. Journal of Manufacturing Systems 2016; 39, 79-100, http://doi.org/10.1016/j.jmsy.2016.03.001.
- 15. Gola A, Wiechetek Ł. Modelling and simulation of production flow in job-shop production system with Enterprise Dynamics software. Applied Computer Science 2017; 13(4): 87-97, http://dx.doi.org/10.23743/acs-2017-32.
- 16. Gola A. Economic Aspects of Manufacturing Systems Design, Actual Problems of Economics 2014; 156 (6): 205-212.
- 17. Gola A, Świć A. Economic analysis of manufacturing systems configuration in the context of their productivity. Actual Problems of Economics 2014; 162(12): 385:394.
- 18. Gola A, Świć A. Reconfigurable manufacturing systems as a way of long-term economic capacity management. Actual Problems of Economics 2015; 166(4): 15-22.
- 19. Goyal K K, Jain P K, Jain M. Optimal configuration selection for reconfigurable manufacturing systems using NSGA II and TOPSIS. International Journal of Production Research 2012; 50(15): 4175-4191.
- 20. Haddou Benderbal H, Dahane M, Benyoucef L. Flexibility-based multi-objective approach for machines selection in reconfigurable manufacturing system (RMS) design under unavailability constraints. International Journal of Production Research 2017; 55(20): 6033- 6051: http://dx.doi.org/10.1080/00207543.2017.1321802.
- 21. Hsieh F-S. Design of scalable agent-based Reconfigurable manufacturing systems with Petri nets. International Journal of Computer Integrated Manufacturing 2018; 31(8): 748-759; http://dx.doi.org/10.1080/0951192X.2018.1429665.
- 22. Jasiulewicz-Kaczmarek M. Practical aspects of the application of RCM to select optimal maintenance policy of the production line. In: Nowakowski, T; Mlynczak, M; Jodejko-Pietruczuk, A; et al. Safety and Reliability: Methodology and Applications - Proceedings of the European Safety and Reliability Conference 2015: 1187-1195, http://dx.doi.org/10.1201/b17399-165.
- 23. Koren Y. The Rapid Responsiveness of RMS. International Journal of Production Research; 51(23-24): 6817-6827, http://dx.doi. org/10.1080/00207543.2013.856528.
- 24. Koren Y, Arbor A, Kota S. United States Patent, no. US 6 349 237, 2000.
- 25. Koren Y, Gu X, Guo W. Reconfigurable manufacturing systems: Principles, design, and future trends. Frontiers of Mechanical Engineering 2018; 13(2): 121-136, http://dx.doi.org/10.1007/s11465-018-0483-0.
- 26. Koren Y, Heisel U, Jovane F, Morivaki T, Pritschow G, Ulsoy G, Van Brussel H. Reconfigurable Manufacturing Systems. CIRP Annals – Manufacturing Technology 1999; 48(2): 527-540.
- 27. Koren Y, Hu S J, Weber T W. Impact on manufacturing system configuration on performance. CIRP Annals – Manufacturing Technology 1998; 47(1): 369-370.
- 28. Koren Y, Shpitalni M. Design of Reconfigurable manufacturing systems. Journal of Manufacturing Systems 2010; 29(4): 130-141, http:// dx.doi.org/10.1016/j.jmsy.2011.01.001.
- 29. Kosicka E, Kozłowski E, Mazurkiewicz D. Intelligent systems of forecasting the failure of machinery park and supporting fulfilment of orders of spare parts. Advances in Intelligent Systems and Computing 2018; 637: 54-63, http://dx.doi.org/10.1007/978-3-319-64465-3_6.
- 30. Li G Q, Mitrouchev P, Wang Y, Brissaud D, Lu L. Evaluation of the logic model of the reconfigurable manufacturing system based on generalised stochastic Petri nets. International Journal of Production Research 2012: 50(22): 6249-6258, http://dx.doi. org/10.1080/00207543.2011.6162235.
- 31. Maganha I, Silva C, Ferreira L M D F. Understanding reconfigurability of manfuacturing systems: An empirical analysis. Journal of Manufacturing Systems 2018; 48: 120-130, http://dx.doi.org/10.1016/j.jmsy.2018.07.004.
- 32. Mehrabi M, Ulsoy G, Koren Y. Reconfigurable manufacturing systems: key to future manufacturing. Journal of Intelligent Manufacturing 2000; 11(4): 403-419, http://dx.doi.org/10.1023/A:1008930403506.
- 33. Mittal K K, Jain P K. An Overview of Performance Measures in Reconfigurable Manfuacturing System. Procedia Engineering 2014; 69: 1125-1129, http://dx.doi.org/10.1016/j.proeng.2014.03.100.
- 34. Moghaddam S K, Houshmand M, Fatahi Valilai O. Configuration design in scalable reconfigurable manufacturing systems (RMS); a case of single-product flow line (SPFL). International Journal of Production Research 2018; 56(11): 3932-3954, http://dx.doi.org/10.1007/s00170- 016-9243-7.
- 35. NapoleoneA, PozettiA, Macchi M.Aframework to manage reconfigurability in manufacturing, InternationalJournal of Production Research 2018; 56(11): 3815-3837, http://dx.doi.org/10.1080/00207543.2018.1437286.
- 36. Negahban A, Smith S J. Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems 2014; 33(2): 241-261, http://dx.doi.org/10.1016/j.jmsy.2013.12.007.
- 37. Puik E, Telgen D, Van Moergestel L, Ceglarek D.Assessment of reconfiguration schemesfor Reconfigurable Manufacturing Systems based on resources and lead time. Robotics and Computer-Integrated Manufacturing 2017; 43: 30-38, http://dx.doi.org/10.1016/j.rcim.2015.12.011.
- 38. Renna P. Decision-making method of reconfigurable manufacturing systems’ reconfiguration by a Gale-Shapley model. Journal of Manufacturing Systems 2017; 45: 149-158, http://dx.doi.org/10.1016/j.jmsy.2017.09.005.
- 39. Reza Abdi M. Layout configuration selection for Reconfigurable manufacturing systems using the fuzzy AHP. International Journal of Manufacturing Technology and Management 2009: 17(1-2): 149-165.
- 40. Singh A, Gupta S, Asjad M, Gupta P. Reconfigurable manufacturing systems: journey and the road ahead. International Journal of System Assurance Engineering and Management 2017; 8(2): 1849-1857, http://dx.doi.org/10.1007/s13198-017-0610-z.
- 41. Spicer P, KorenY, Shpitalni M,Yip-Hoi D. Design principlesfor machining system configurations. CIRPAnnals – Manufacturing Technology 2002; 51(1): 275-280, http://dx.doi.org/10.1016/S0007-8506(07)61516-9.
- 42. Wang G X, Huang S H,YanY, Du JJ. Reconfiguration schemes evaluation based on preference ranking of key characteristics of reconfigurable manufacturing systems. International Journal of Advanced Manufacturing Technology 2017; 89 (5-8): 2231-2249, http://dx.doi.org/10.1007/ s00170-016-9243-7.
- 43. Waters D. Operations Management: Producing Goods and Services, Pearson Education 2002.
- 44. Xiaobo Z, Wang J, Luo Z. A stochastic model of a Reconfigurable manufacturing system, Part 2: Optimal configurations. International Journal of Production Research 2000; 38(12): 2829-2842, https//dx.doi.org/10.1080/002075400411501.
- 45. Yamada Y. Dynamic reconfiguration of reconfigurable manufacturing systems using particle swarm optimization. Proceedings 2006 IEEE International Conference on Robotics and Automation 2006: 1444-1449, http://dx.doi.org/10.1109/ROBOT.2006.1641912.
- 46. Zheng P, Wang H, Sang Z, Zhong R Y, Liu Y, Liu C, Mubarok K, Yu S, Xu X. Smart manufacturing systems for Industry 4.0: Conceptual framework scenarios, and future peRMSectives. Frontiers of Mechanical Engineering 2018; 13(2): 137-150, http://dx.doi.org/10.1007/ s11465-018-0499-5.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78d8da0e-b4c3-48cc-aac6-1d05a48e3e9d