PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Ag2Te Addition on Thermoelectric Properties of Bismuth Telluride

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The resistivity, Seebeck coefficient and thermal diffusivity were determined for BiTe3 + Ag2Te composite mixtures. Subsequent measurements were carried out in the temperature range from 20 to 270°C, and for compositions from pure Bi2Te3 to xAg2Te = 0.65 selected along the pseudo-binary section of Ag-Bi-Te ternary system. It was found that conductivity vs. temperature dependence shows visible jump between 140 and 150°C in samples with highest Ag2Te content, which is due to monoclinic => cubic Ag2Te phase transformation. Measured Seebeck coefficient is negative for all samples indicating they are n-type semiconductors. Evaluated power factor is of the order 1.52·10-3 and it decreases with increasing Ag2Te content (at. %). Recalculated thermal conductivity is of the order of unity in W/(m K), and is decreasing with Ag2Te addition. Finally, evaluated Figure of Merit is 0.43 at 100°C and decreases with temperature rise.
Twórcy
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
autor
  • Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC
  • AGH University of Science and Technology in Krakow, Faculty of Non-Ferrous Metals, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
Bibliografia
  • [1] T.J. Seebeck, Magnetische Polarisation der Metalle und Erze dürch Temperatur-Differenz, Abhandlungen der Königlichen Akademie des Wissenschaften, Berlin 265-373 (1822-1823). https://collections.thulb.uni-jena.de/rsc/viewer/HisBest_derivate_00003304/ NT_189_Seite_004.tiff
  • [2] T.M. Tritt, M.A. Subramanian, Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View, MRS Bull. 31 (3), 188-198 (2006). DOI: https://doi.org/10.1557/mrs2006.44
  • [3] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2), 105-114 (2008). DOI: https://doi.org/10.1038/nmat2090
  • [4] K. Ikoma, M. Munekiyo, K. Furuya, M. Kobayashi, T. Izumi, K. Shinohara, Thermoelectric module and generator for gasoline engine vehicles, Seventeenth Internat. Conf. Thermoelectr. Proc. ICT98 (Cat. No.98TH8365), 1998, 464-467. DOI: https://doi.org/10.1109/ICT.1998.740419
  • [5] https://www.farwestcorrosion.com/thermoelectric-generators-forcathodic-protection-by-gentherm.html
  • [6] http://www.marlow.com/products.html
  • [7] T. Hendricks, W.T. Choate, Engineering scoping study of thermoelectric generator systems for industrial waste heat recovery, EERE Publication and Product Library 2006. DOI: https://doi.org/10.2172/1218711
  • [8] J. Yang, T. Caillat, Thermoelectric materials for space and automotive power generation, MRS Bull. 31 (3), 224-229 (2006). DOI: https://doi.org/10.1557/mrs2006.49
  • [9] http://thermoelectrics.matsci.northwestern.edu/
  • [10] A. F. Ioffe, Semiconductor thermoelements, and thermoelectric, Cool. Infosearch Ltd., 1957.
  • [11] M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Electronic transport in semimetallic cerium sulfide, Phys. Rev. 133 (4A), A1143-A1152 (1964). DOI: https://doi.org/10.1103/PhysRev.133.A1143
  • [12] G.D. Mahan, J.O. Sofo, The best thermoelectric, Proc. Natl. Acad. Sci. USA 93 (15), 7436-7439 (1996). DOI: https://doi.org/10.1073/pnas.93.15.7436
  • [13] G. Slack, CRC Handbook of Thermoelectrics. Boca Raton, FL: CRC Press, 1995.
  • [14] L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47 (19), 12727-12731 (1993). DOI: https://doi.org/10.1103/PhysRevB.47.12727
  • [15] J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J. E. Bowers, A. Shakouri, A.C. Gossard, Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices, Phys. Rev. B 74 (20), 205335-1-205335-5 (2006). DOI: https://doi.org/10.1103/PhysRevB.74.205335
  • [16] G.S. Nolas, J. Poon, M. Kanatzidis, Recent developments in bulk thermoelectric materials, MRS Bull. 31 (3), 199-205 (2006). DOI: https://doi.org/10.1557/mrs2006.45
  • [17] L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321 (5895) 1457-1461 (2008). DOI: https://doi.org/10.1126/science.1158899
  • [18] D. Zabek, F. Morini, Solid state generators and energy harvesters for waste heat recovery and thermal energy harvesting, Therm. Sci. Eng. Prog. 9, 235-247 (2019). DOI: https://doi.org/10.1016/j.tsep.2018.11.011
  • [19] H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, Brit. J. Appl. Phys. 5 (11), 386-390 (1954). DOI: https://doi.org/10.1088/0508-3443/5/11/303
  • [20] https://www.electronics-cooling.com/2006/11/the-seebeckcoefficient/
  • [21] C. Wood, Materials for thermoelectric energy conversion, Reports Prog. Phys. 51 (4), 459-539 (1988). DOI: https://doi.org/10.1088/0034-4885/51/4/001
  • [22] J. Yang, R. Chen, X. Fan, S. Bao, W. Zhu, Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing, J. Alloys Compd. 407 (1-2), 330-333 (2006). DOI: https://doi.org/10.1016/j.jallcom.2005.06.041
  • [23] Q. Zhang, X. Ai, L. Wang, Y. Chang, W. Luo, W. Jiang, L. Chen, Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical twophased heterostructure, Adv. Funct. Mater. 25 (6), 966-976 (2015). DOI: https://doi.org/10.1002/adfm.201402663
  • [24] S. Chen, N. Logothetis, L. Ye, J. Liu, A high performance Ag alloyed nano-scale n-type Bi2Te3 based thermoelectric materials, Mater. Today Proc. 2 (2), 610-619 (2015). DOI: https://doi.org/10.1016/j.matpr.2015.05.083
  • [25] D.T. Morelli, V. Jovovic, and J.P. Heremans, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors, Phys. Rev. Lett. 101 (3), 035901-1-035901-4 (2008). DOI: https://doi.org/10.1103/PhysRevLett.101.035901
  • [26] Q. Lognoné, F. Gascoin, Reactivity, stability and thermoelectric properties of n-Bi2Te3 doped with different copper amounts, J. Alloys Compd. 610, 1-5 (2014). DOI: https://doi.org/10.1016/j.jallcom.2014.04.166
  • [27] R. Zybała, K. Kaszyca, M. Schmidt, M. Chmielewski, The properties of Bi2Te3-Cu joints obtained by SPS/FAST method, J. Electron. Mater. 48 (6), 3859-3865 (2019). DOI: https://doi.org/10.1007/s11664-019-07120-x
  • [28] E.A. Skrabek, D.S. Trimmer, CRC Handbook of Thermoelectrics, 1995 USA: CRC Press, New York.
  • [29] M. Fujikane, K. Kurosaki, H. Muta, S. Yamanaka, Electrical properties of α- and β-Ag2Te, J. Alloys Compd. 387 (1-2), 297-299 (2005). DOI: https://doi.org/10.1016/j.jallcom.2004.06.054
  • [30] T. Ouyang, X. Zhang, M. Hu, Thermal conductivity of ordered-disordered material: A case study of superionic Ag2Te, Nanotechnology 26 (2), 1-8 (2015). DOI: https://doi.org/10.1088/0957-4484/26/2/025702
  • [31] X. Zhang, L.-D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Mater. 1 (2), 92-105 (2015). DOI: https://doi.org/10.1016/j.jmat.2015.01.001
  • [32] S. Lee, H.S. Shin, J.Y. Song, M.-H. Jung, Thermoelectric properties of a single crystalline Ag2Te nanowire, J. Nanomater. 2017, 4308968 (5 pages) (2017), DOI: https://doi.org/10.1155/2017/4308968
  • [33] M.H. Lee, J.-S. Rhyee, S. Kim, Y.-H. Choa, Thermoelectric properties of Bi0.5Sb1.5Te3/Ag2Te bulk composites with size- and shape-controlled Ag2Te nano-particles dispersion, J. Alloys Compd. 657, 639-645 (2016). DOI: https://doi.org/10.1016/j.jallcom.2015.10.160
  • [34] T. Sakakibara, Y. Takigawa, K. Kurosawa, Hall mobility enhancement in AgBiTe2-Ag2Te composites, Jpn. J. Appl. Phys. 41 (5R), 2842-2844 (2002). DOI: https://doi.org/10.1143/JJAP.41.2842
  • [35] T. Sakakibara, Y. Takigawa, A. Kameyama, K. Kurosawa, Improvement of thermoelectric properties by dispersing Ag2Te grains in AgBiTe2 matrix: composition effects in (AgBiTe2)1-x(Ag2Te)x, J. Ceram. Soc. Japan 110 (4), 259-263 (2002). DOI: https://doi.org/10.2109/jcersj.110.259
  • [36] H. Fang, H. Yang, Y. Wu, Thermoelectric properties of silver telluride-bismuth telluride nanowire heterostructure synthesized by site-selective conversion, Chem. Mater. 26 (10), 3322-3327 (2014). DOI: https://doi.org/10.1021/cm501188c
  • [37] W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32 (9), 1679-1684 (1961). DOI: https://doi.org/10.1063/1.1728417
  • [38] R.D. Cowan, Pulse method of measuring thermal diffusivity at high temperatures, J. Appl. Phys. 34 (4), 926-927 (1963). DOI: https://doi.org/10.1063/1.1729564
  • [39] J. I. Gersten, F. W. Smith, The Physics and Chemistry of Materials., 2001 John Wiley & Sons, INC., New York, USA.
  • [40] W. Gierlotka, Thermodynamic assessment of the Ag-Te binary system, J. Alloys Compd. 485 (1-2), 231-235 (2009). DOI: https://doi.org/10.1016/j.jallcom.2009.06.028
  • [41] O. Kubaschewski, C.B. Alcock, P.J. Spencer, Materials Thermochemistry, 6th ed. Oxford, 1993 Pergamon Press Ltd., New York.
  • [42] K.A. Borup, J. de Boor, H. Wang, F. Gascoin, X. Shi, L. Chen, M.I. Fedorov, E. Müller, B.B. Iversen, G.J. Snyder, Measuring thermoelectric transport properties of materials, Energy Environ. Sci. 8 (2), 423-435 (2015). DOI: https://doi.org/10.1039/C4EE01320D
  • [43] E.S. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder, High temperature thermoelectric efficiency in Ba8Ga16Ge30, Phys. Rev. B 77 (7), 075203-1-075203-8 (2008). DOI: https://doi.org/10.1103/PhysRevB.77.075203
  • [44] J. Zhang, X. Qin, D. Li, Ch. Song, Y. Liu, H. Xin, T. Zou, Y. Li, Optimized thermoelectric properties of AgSbTe2 through adjustment of fabrication parameters, Electron. Mater. Lett. 11 (1), 133-137 (2015). DOI: https://doi.org/10.1007/s13391-014-4152-0
  • [45] B. Du, M. Liu, J. Xu, B. Hu, B. Liu, T. Su, J. Wang, Thermodynamic, structural and thermoelectric properties of AgSbTe2 thick films developed by melt spinning, Nanomaterials-Basel 8 (7), 474 (10 pages) (2018), DOI: https://doi.org/10.3390/nano8070474
  • [46] L. Pan, D. Bérardan, N. Dragoe, High thermoelectric properties of n-Type AgBiSe2, J. Am. Chem. Soc. 135 (13), 4914-4917 (2013), DOI: https://doi.org/10.1021/ja312474n
  • [47] A. Stegherr, P. Eckerlin, P. Wald, Untersuchung der Schnitte Ag2Te-Bi2Te3 und AgBiTe2-PbTe, Z. Metalkde. 54 (10), 598-600, (1963). DOI: https://doi.org/10.1515/ijmr-1963-541009
  • [48] https://www.asminternational.org/materials-resources/onlinedatabases/-/journal_content/56/10192/15469013/DATABASE
  • [49] M.B. Babanly, Y.M. Shykhyev, N.B. Babanly, Y.A. Yusibov, Phase equilibria in the Ag-Bi-Te system, Russ. J. Inorg. Chem. 52 (3), 434-440 (2007). DOI: https://doi.org/10.1134/S0036023607030242
  • [50] I.A. Avramova, S.K. Plachkova, Electrical resistivity and scattering mechanisms of GeTe-rich thermoelectric materials in the system GeTe-AgBiTe2, Phys. Status Solidi 179 (1), 171-177 (2000). DOI: https://doi.org/10.1002/1521-396X(200005)179:13.0.CO;2-Z
  • [51] G. Tan, F. Shi, H. Sun, L.-D. Zhao, C. Uher, V.P. Dravidb, M.G. Kanatzidis, SnTe-AgBiTe2 as an efficient thermoelectric material with low thermal conductivity, J. Mater. Chem. A2 (48), 20849-20854 (2014). DOI: https://doi.org/10.1039/C4TA05530F
  • [52] J. de Boor, E. Müller, Data analysis for Seebeck coefficient measurements, Rev. Sci. Instrum. 84 (6), 065102-1-065102-0 (2013), DOI: http://doi.org/10.1063/1.4807697
  • [53] D.-H. Kim, T. Mitani, Thermoelectric properties of fine-grained Bi2Te3 alloys, J. Alloys Compd., 399 (1-2), 14-19 (2005). DOI: https://doi.org/10.1016/j.jallcom.2005.03.021
  • [54] J.W. Vandersande, A. Zoltan, C. Wood, Accurate determination of specific heat at high temperatures using the flash diffusivity method, Int. J. Thermophys. 10 (1), 251-257 (1989). DOI: https://doi.org/10.1007/BF00500723
  • [55] T.M. Tritt, Thermoelectric materials: Holey and unholey semiconductors, Science 283 (5403), 804-805 (1999). DOI: https://doi.org/10.1126/science.283.5403.804
  • [56] F.J. DiSalvo, Thermoelectric cooling and power generation, Science 285 (5428), 703-706 (1999). DOI: https://doi.org/10.1126/science.285.5428.703
  • [57] X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang, M. Niino, Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure, Appl. Phys. Lett. 90 (1), 012102 (2007). DOI: https://doi.org/10.1063/1.2425007
  • [58] L. Hu, T. Zhu, X. Liu, X. Zhao, Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials, Adv. Funct. Mater. 24 (33), 5211-5218 (2014). DOI: https://doi.org/10.1002/adfm.201400474
  • [59] C.-H. Kuo, C.-S. Hwang, M.-S. Jeng, W.-S. Su, Y.-W. Chou, J.-R. Ku, Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering, J. Alloys Compd. 496 (1-2), 687-690 (2010). DOI: https://doi.org/10.1016/j.jallcom.2010.02.171
  • [60] Y. Pan, T.-R. Wei, C.-F. Wu, J.-F. Li, Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3-xSex alloys: the combined effect of point defect and Se content, J. Mater. Chem. C 3 (40), 10583-10589 (2015). DOI: https://doi.org/10.1039/C5TC02219C
  • [61] J. Jiang, L. Chen, S. Bai, Q. Yao, Q. Wang, Fabrication and thermoelectric performance of textured n-type Bi2(Te,Se)3 by spark plasma sintering, Mater. Sci. Eng. B 117 (3), 334-338 (2005). DOI: https://doi.org/10.1016/j.mseb.2005.01.002
  • [62] T. Zhu, L. Hu, X. Zhao, J. He, New insights into intrinsic point defects in V2VI3 thermoelectric materials, Adv. Sci. 3 (7), 1600004-1-1600004-16 (2016). DOI: https://doi.org/10.1002/advs.201600004
  • [63] T.S. Oh, D.-B. Hyun, N.V. Kolomoets, Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys, Scripta Mater. 42 (9), 849-854, (2000). DOI: https://doi.org/10.1016/S1359-6462(00)00302-X
Uwagi
1. This work was carried out in the framework of Polish-Taiwanese cooperation under grant DKO/PL-TW1/5/2013 “Phase Diagram Determination of Thermoelectric Materials”. One of us (S.D.) is grateful to Prof. Sinn-Wen Chen from National Tsing Hua University and Dr. Yang-Yuan Chen from Institute of Physics, Academia Sinica in whose laboratory this experimental work was carried out.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78d7d244-3dae-4ca1-b8cc-0e4008e52ea9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.