PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bone Remodelling Model Incorporating Both Shape and Internal Structure Changes by Three Different Reconstruction Mechanisms. A Lumbar Spine Case

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Model przebudowy kości uwzględniający zmiany struktury i kształtu spowodowane trzema różnymi mechanizmami przebudowy. Przypadek kręgosłupa lędźwiowego
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of analysis of bone remodelling in the vicinity of implants. The authors aimed at building a model and numerical procedures which may be used as a tool in the prosthesis design process. The model proposed by the authors is based on the theory of adaptive elasticity and the lazy zone concept. It takes into consideration not only changes of the internal structure of the tissue (described by apparent density) but also surface remodelling and changes caused by the effects revealing some features of “creep”. Finite element analysis of a lumbar spinal segment with an artificial intervertebral disc was performed by means of the Ansys system with custom APDL code. The algorithms were in two variants: the so-called site-independent and site-specific. Resultant density distribution and modified shape of the vertebra are compared for both of them. It is shown that this two approaches predict the bone remodelling in different ways. A comparison with available clinical outcomes is also presented and similarities to the numerical results are pointed out.
PL
Artykuł prezentuje metodę analizy przebudowy kości w otoczeniu implantów. Celem pracy było opracowanie modelu i procedur numerycznych mogących służyć jako narzędzie wspomagające projektowanie protez. Zaproponowany przez autorów model opiera się na teorii adaptacyjnej sprężystości i koncepcji strefy martwej. Uwzględnia on nie tylko zmiany struktury wewnętrznej tkanki (opisanej przez gęstość pozorną), ale także przebudowę powierzchniową i zmiany związane z efektami wykazującymi pewne cechy “pełzania”. Przeprowadzona została analiza metodą elementów skończonych segmentu ruchowego kręgosłupa ze sztucznym krążkiem międzykręgowym z wykorzystaniem systemu Ansys i własnego kodu APDL. Algorytmy zbudowano w dwóch wariantach: tzw. niezależnym i zależnym od miejsca. Porównano uzyskane rozkłady gęstości i zmiany kształtu pokazując, że obydwa warianty przebudowę kości przewidują w różny sposób. Zaprezentowano również porównanie wyników numerycznych z badaniami klinicznymi wskazując na ich podobieństwa.
Rocznik
Strony
549--563
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Institute of Aeronautics and Applied Mechanics,Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw
autor
  • Institute of Aeronautics and Applied Mechanics,Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw
Bibliografia
  • [1] T. Lekszycki. Optimality conditions in modeling of bone adaptation phenomenon. Journal of Theoretical and Applied Mechanics, 37(3): 607-623, 1999.
  • [2] G. Krzesinski. Numerical simulation methods in stress analysis of bone tissue and implant design. Oficyna Wydawnicza Politechniki Warszawskiej, 2012. (in Polish).
  • [3] J.J. Telega and T. Lekszycki. Reconstruction of bone tissue: the evolution of concepts and models. In R. Będzinski, K. Kędzior, J. Kiwerski, A. Morecki, K. Skalski, A. Wall, A. Witt, editors Biomechanics and Rehabilitation Engineering, volume 5, EXIT, Warsaw, 2004. (in Polish).
  • [4] A. Dąbrowska-Tkaczyk and M. Pawlikowski. Influence of remodelling stimulating factor selection on bone density distribution in pelvic bone model. Acta of Bioengineering and Biomechanics, 8(2):119-126, 2006.
  • [5] M. Nowak. On some properties of bone functional adaptation phenomenon useful in mechanical design. Acta of Bioengineering and Biomechanics, 12(2):49-54, 2010.
  • [6] K. Tsubota, T. Adachi and Y. Tomita. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodelling simulation toward uniform stress state Journal of Biomechanics, 35(12):1541-1551, 2002.
  • [7] M. Reicher and A. Bochenek. Human Anatomy. volume 1, Wydawnictwo Lekarskie PZWL, 1990. (in Polish).
  • [8] R. Huiskes. If bone is the answer, then what is the question? Journal of Anatomy, 197(2):145-156, 2000.
  • [9] P. Borkowski, K. Kędzior, G. Krzesinski, K.R. Skalski, P. Wymysłowski and T. Zagrajek. Numerical investigation of a new type of artificial lumbar disc. Journal of Theoretical and Applied Mechanics, 42(2):253-268, 2004.
  • [10] P. Borkowski, P. Marek, G. Krzesinski, J. Ryszkowska, B. Wasniewski, P. Wymysłowski and T. Zagrajek. Finite element analysis of artificial disc with an elastomeric core in the lumbar spine. Acta of Bioengineering and Biomechanics, 14(1):59-66, 2012.
  • [11] V.K. Goel, S.A. Ramirez, W. Kong and L.G. Gilbertson. Cancellous bone Young’s modulus variation within the vertebral body of a ligamentous lumbar spine – application of bone adaptive remodelling concepts. Journal of Biomechanical Engineering, 117(3):266-271, 1995.
  • [12] X.Wang and G.A. Dumas. Simulation of bone adaptive remodeling using stochastic process as loading history. Journal of Biomechanics, 35(3):375-380, 2002.
  • [13] Zhu Xinghua, Gong He, Zhu Dong, Gao Bingzhao, A study of the effect of non-linearities in the equation of bone remodeling. Journal of Biomechanics, 35(7):951-960, 2002.
  • [14] X. Wang and G.A. Dumas. Evaluation of effects of selected factors on inter-vertebral fusion – a simulation study. Medical Engineering & Physics, 27(3):197-207, 2005.
  • [15] V. Palissery, R.C. Mulholland and D.S. McNally. The implications of stress patterns in the vertebral body under axial support of an artificial implant. Medical Engineering & Physics, 31(7):833-837, 2009.
  • [16] J. Homminga, R. Aquarius, V.E. Bulsink, C. Jansen and N. Verdonschot. Can vertebra density changes be explained by intervertebral disc degeneration? Medical Engineering & Physics, 34(4):453-458, 2012.
  • [17] B.W. Cunningham, G.L. Lowery, H.A. Serhan, A.E. Dmitriev, C.M. Orbegoso, P.C. McAfee, R.D. Fraser, R.E.Ross and S.S.Kulkarni. Total disc replacement arthroplasty using theAcroFlex lumbar disc: a non-human primate model. European Spine Journal, 11:S115-S123, 2002.
  • [18] W.B. Cunningham. Basic scientific considerations in total disc arthroplasty. The Spine Journal, Suppl. 4(6):S219-S230, 2004.
  • [19] B.J.C. Freeman and J. Davenport. Total disc replacement in the lumbar spine: a systematic review of the literature. European Spine Journal, 15: 439-447, 2006.
  • [20] H.D. Link. History, design and biomechanics of the LINK SB Charité artificial disc. European Spine Journal, 11:S98-S105, 2002.
  • [21] A. Wrona. Computer algorithm for examination of the remodelling process in the cancellous bone. Acta Bio-Optica et Informatica Medica. Inzynieria Biomedyczna, 20(1):1–10, 2014. (in Polish).
  • [22] W. Wolanski and D. Larysz D. Biomechanics of stabilizing the cervical spine. BEL Studio, 2011. (in Polish).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78cfc2d6-be00-438b-9425-237f210d1c8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.