PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of corrosion resistance of stainless steel with Zn doped silane coatings

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Poprawa odporności korozyjnej stali nierdzewnej powłokami silanowymi domieszkowanymi Zn
Języki publikacji
EN
Abstrakty
EN
Blank silane films are not able to provide long-term corrosion protection. As is known, dopants with corrosion inhibiting properties can be added to the silane sol-gel network in order to increase their corrosion resistance. The present work investigates the protective properties of air-aged films obtained from a solution of isobutyltriethoxysilane (IBTES) doped with 0.01 mol/l and 0.1 mol/l zinc nitrate Zn(NO3)2 ∙ 6H2O prepared on an X20Cr13 stainless steel substrate. The surface morphologies, adhesion to the substrate and the corrosion resistance of the obtained films in an 0.5 M Cl− solution were examined. The experimental results showed that IBTES films doped with 0.01 mol/l zinc nitrate deposited on the surface of stainless steel had better protective properties, while those doped with 0.1 mol/l of the inhibitor had worse protective properties against local corrosion compared to blank IBTES film.
PL
Powłoki silanowe nie są w stanie zapewnić długotrwałej ochrony przed korozją. Jak wiadomo, do sieci zol-żel silanu można dodawać domieszki o właściwościach hamujących korozję w celu zwiększenia ich odporności na korozję. W pracy zbadano właściwości ochronne starzonych w powietrzu powłok otrzymanych z roztworu izobutylo- trietoksysilanu (IBTES) domieszkowanych 0,01 mol/l i 0,1 mol/l azotanu cynku Zn(NO3)2 ∙ 6H2O wytworzonych na podłożu ze stali nie- rdzewnej X20Cr13. Zbadano morfologię powierzchni, przyczepność do podłoża oraz odporność korozyjną otrzymanych filmów w 0,5M roztworze Cl−. Badania eksperymentalne wykazały, że powłoki IBTES domieszkowane 0,01 mol/l azotanu cynku osadzone na powierzchni stali nierdzewnej miały lepsze właściwości ochronne przed korozją lokalną w porównaniu z powłoką IBTES, natomiast domieszkowane 0,1mol/l inhibitora – gorsze.
Rocznik
Tom
Strony
373--377
Opis fizyczny
Bibliogr. 32 poz., fot., wykr.
Twórcy
  • Institute of Materials Engineering, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, 19 Armii Krajowej Ave., Czestochowa, 42-200, Poland
Bibliografia
  • [1] R.T. Loto. 2013. “Pitting Corrosion Evaluation of Austenitic Stainless Steel Type 304 in Acid Chloride Media”. Journal of Materials and Environmental Science 4 (4): 448–459.
  • [2] W.J. van Ooij, D. Zhu, V. Palanivel, J.A. Lamar, M. Stacy. 2006. “Overview: The Potential of Silanes for Chromate Replacement in Metal Finishing Industries”. Silicon Chemistry 3 (1): 11–30. DOI: 10.1007/S11201-005-4407-6.
  • [3] V. Palanivel, D. Zhu, W.J. van Ooij. 2003. “Nanoparticle-Filled Silane Films as Chromate Replacements for Aluminum Alloys”. Progress in Organic Coating 47 (3–4): 384–392. DOI: 10.1016/j.porgcoat.2003.08.015.
  • [4] W. Trabelsi, L. Dhouibi, E. Triki, M.G.S. Ferreira, M.F. Montemor. 2005. “An Electrochemical and Analytical Assessment on the Early Corrosion Behaviour of Galvanised Steel Pretreated with Aminosilanes”. Surface and Coatings Technology 192 (2–3): 284–290. DOI: 10.1016/j.surfcoat.2004.04.088.
  • [5] T.L. Metroke, R.L. Parkhill, E.T. Knobbe. 2001. “Passivation of Metal Alloys Using Sol–Gel-Derived Materials – A Review”. Progress in Organic Coatings 41 (4): 233–238. DOI: 10.1016/S0300-9440(01)00134-5.
  • [6] S. Akhtar, A. Matin, A.M. Kumar, A. Ibrahim, T. Laoui. 2018. “Enhancement of Anticorrosion Property of 304 Stainless Steel Using Silane Coatings”. Ap- plied Surface Science 440: 1286–1297. DOI: 10.1016/j.apsusc.2018.01.203.
  • [7] A. Foroozan E., R. Naderi. 2015. “Effect of Coating Composition on the Anticorrosion Performance of a Silane Sol–Gel Layer on Mild Steel”. RSC Advances 5 (129): 106485–106491. DOI: 10.1039/C5RA21744J.
  • [8] Y. Nie, J. Huang, Sh. Ma, Zh. Li, Y. Shi, X. Yang, X. Fang, J. Zeng, P. Bi, J. Qi, Sh. Wang, Y. Xia, T. Jiao, D. Li, M. Cao. 2020. “MXene-Hybridized Silane Films for Metal Anticorrosion and Antibacterial Applications”. Applied Surface Science 527: 146915. DOI: 10.1016/j.apsusc.2020.146915.
  • [9] M.L. Zheludkevich, I.M. Salvado, M.G.S. Ferreira. 2005. “Sol–Gel Coatings for Corrosion Protection of Metals”. Journal of Materials Chemistry 15 (48): 5099–5111. DOI: 10.1039/B419153F.
  • [10] J. Wang, J. Chen. 2016. “The Effect of Silane on the Microstructure, Corrosion, and Abrasion Resistances of the Anodic Films on Ti Alloy”. Journal of Materials Engineering and Performance 25 (4): 1594–1602. DOI: 10.1007/s11665-016-1984-9.
  • [11] J. Balaji, S.H. Roh, T.N.J.I. Edison, H.Y. Jung, M.G. Sethuraman. 2020. “Sol– –Gel Based Hybrid Silane Coatings for Enhanced Corrosion Protection of Copper in Aqueous Sodium Chloride”. Journal of Molecular Liquids 302:
  • [12] A.A. Younis, W. Ensinger, M.M.B. El‐Sabbah, R. Holze. 2013. “Corrosion Protection of Pure Aluminium and Aluminium Alloy (AA7075) in Salt Solution with Silane‐Based Sol–Gel Coatings”. Materials and Corrosion 64 (4): 276–283. DOI: 10.1002/maco.201206691.
  • [13] M. Fedel, M. Olivier, M. Poelman, F. Deflorian, S. Rossi, M.E. Druart. 2009. “Corrosion Protection Properties of Silane Pre-Treated Powder Coated Galvanized Steel”. Progress in Organic Coatings 66 (2): 118–128. DOI: 10.1016/j.porgcoat.2009.06.011.
  • [14] W. Trabelsi, P. Cecilio, M.G.S. Ferreira, M.F. Montemor. 2005. “Electrochemical Assessment of the Self-Healing Properties of Ce-Doped Silane Solutions for the Pre-Treatment of Galvanised Steel Substrates”. Progress in Organic Coatings 54 (4): 276–284. DOI: 10.1016/j.porgcoat.2005.07.006.
  • [15] L.M. Palomino, P.H. Suegama, I.V. Aoki, M.F. Montemor, H.G. De Melo. 2009. “Electrochemical Study of Modified Cerium–Silane Bi-Layer on Al Alloy 2024- -T3”. Corrosion Science 51 (6): 1238–1250. DOI: 10.1016/j.corsci.2009.03.012.
  • [16] W. Liu, Ch. An, J. Hao, W. Li. 2021. “Cerium Doped Trimethoxy Silane-Aluminium Isopropoxide Coatings for Enhanced Corrosion Protection of 1061 Aluminum Alloy in Aqueous Sodium Chloride Solution”. International Journal of Electrochemical Science 16 (3): 210352. DOI: 10.20964/2021.03.18.
  • [17] E. Owczarek. 2019. “Methods of Modifying Anticorrosive Protective Properties of Silane Films”. Acta Physica Polonica: A 135 (2): 147–152. DOI: 10.12693/ APhysPolA.135.147.
  • [18] N. Asadi, R. Naderi. 2020. Nanoparticles Incorporated in Silane Sol–Gel Coatings. In: S. Rajendran, T.A.N.H. Nguyen, S. Kakooei, M. Yeganeh, Y. Li (eds.). Corrosion Protection at the Nanoscale. Amsterdam–Cambridge: Elsevier.
  • [19] F. Ahangaran, A.H. Navarchian. 2020. “Recent Advances in Chemical Surface Modification of Metal Oxide Nanoparticles with Silane Coupling Agents: A Review”. Advances in Colloid and Interface Science 286: 102298. DOI: 10.1016/j.cis.2020.102298.
  • [20] B. Xue, M. Yu, J. Liu, J. Liu, S. Li, L. Xiong. 2017. “Corrosion Protection of AA2024-T3 by Sol–Gel Film Modified with Graphene Oxide”. Journal of Alloys and Compounds 725: 84–95. DOI: 10.1016/j.jallcom.2017.05.091.
  • [21] Y. Liu, H. Cao, Y. Yu, Sh. Chen. 2015. “Corrosion Protection of Silane Coatings Modified by Carbon Nanotubes on Stainless Steel”. International Journal of Electrochemical Science 10 (4): 3497–3509.
  • [22] S.G. Chen, Y.C. Cai, C. Zhuang, M.Y. Yu, X.W. Song, Y.P. Zhang. 2015. “Electrochemical Behavior and Corrosion Protection Performance of Bis-[Triethoxysilylpropyl] Tetrasulfide Silane Films Modified with TiO2 Sol on 304 Stainless Steel”. Applied Surface Science 331: 315–326. DOI: 10.1016/j.apsusc.2015.01.008.
  • [23] Z.Q. Zhang, R.Ch. Zeng, C.G. Lin, L. Wang, X.B. Chen, D.Ch. Chen. 2020. “Corrosion Resistance of Self-Cleaning Silane/Polypropylene Composite Coatings on Magnesium Alloy AZ31”. Journal of Materials Science and Technology 41: 43–55. DOI: 10.1016/j.jmst.2019.08.056.
  • [24] U. Eduok, O. Faye, E. Ohaeri, J. Szpunar, I. Akpan. 2020. “Synthesis and Characterization of Protective Silica Reinforced Hybrid Poly(Vinylpyrrolidone)/ Acrylate/Silane Nanocomposite Coatings”. New Journal of Chemistry 44 (3): 1117–1126. DOI: 10.1039/c9nj04835a.
  • [25] E. Owczarek, L. Adamczyk. 2016. “Electrochemical and Anticorrosion Properties of Bilayer Polyrhodanine/Isobutyltriethoxysilane Coatings”. Journal of Applied Electrochemistry 46 (6): 635–643. DOI: 10.1007/s10800-016-0946-0.
  • [26] E. Owczarek. 2018. “Comparison Studies of the Protective Properties of Silane/Polyrhodanine and Polyrhodanine/Silane Bilayer Coatings Applied on Stainless Steel”. Anti-Corrosion Methods and Materials 65: 190–196. DOI: 10.1108/ACMM-07-2017-1814.
  • [27] L.K. Wu, J.M. Hu, J.Q. Zhang. 2012. “Electrodeposition of Zinc-Doped Silane Films for Corrosion Protection of Mild Steels”. Corrosion Science 59: 348–351. DOI: 10.1016/j.corsci.2012.02.016.
  • [28] S. Alinejad, R. Naderi, M. Mahdavian. 2016. “The Effect of Zinc Cation on the Anticorrosion Behavior of an Eco-Friendly Silane Sol–Gel Coating Applied on Mild Steel”. Progress in Organic Coatings 101: 142–148. DOI: 10.1016/j.porgcoat.2016.08.005.
  • [29] Sh. Alinejad, R. Naderi, M. Mahdavian. 2017. “Effect of Inhibition Synergism of Zinc Chloride and 2-Mercaptobenzoxzole on Protective Performance of an Ecofriendly Silane Coating on Mild Steel”. Journal of Industrial and Engineering Chemistry 48: 88–98. DOI: 10.1016/j.jiec.2016.12.024.
  • [30] R. Naderi, M.M. Attar. 2009. “Application of the Electrochemical Noise Method to Evaluate the Effectiveness of Modification of Zinc Phosphate Anticorrosion Pigment”. Corrosion Science 51 (8): 1671–1674. DOI: 10.1016/j.corsci.2009.04.015.
  • [31] H.S. Tangade, S.N. Pusawale, S.S. Shirguppikar 2020. “Synthesis and Characterization of ZnO Thin Films Deposited by Chemical Route”. Materials Today: Proceedings 33 (8): 5147–5149. DOI: 10.1016/j.matpr.2020.02.861.
  • [32] T.H. Muster, A.K. Neufeld, I.S. Cole. 2004. “The Protective Nature of Passivation Films on Zinc: Wetting and Surface Energy”. Corrosion Science 46 (9): 2337–2354. DOI: 10.1016/j.corsci.2004.01.001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78cd407b-d60f-4f9c-a386-a21e04f6a670
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.