PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regeneration of polymer and ceramic modules with the use of recovered single-phase detergent. Dairy industry case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effectiveness of recovered washing compositions containing single-phase detergents from cleaning-in-place (CIP) systems as solutions for the regeneration of membrane modules fouled during the filtration of wastewater from the prerinsing of the production line (white water) was assessed. The influence of process parameters (regeneration time, transmembrane pressure, cross-flow velocity, and solution temperature) on relative flux recovery was evaluated. A significantly higher regeneration efficiency of the ceramic and polymeric modules was obtained for the alkaline detergent compared to that of the acid formula. The key process parameters for the regeneration cycle were the contact time of the module with the cleaning detergent and its temperature. The influence of transmembrane pressure and cross-flow velocity on module permeability was negligible. Filtration experiments with white water confirmed that the membrane separation process is suitable for the recovery of milk compounds from dairy effluents.
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] European Commission, Overview: Milk and dairy products, https://ec.europa.eu/info/food-farming -fisheries/animals-and-animal-products/animal-products/milk-and-dairy-products_en#overview
  • [2] KOLEV SLAVOV A., General characteristics and treatment possibilities of dairy wastewater – a review, Dairy, Food Technol. Biotechnol., 2017, 55 (1), 14–28. DOI: 10.17113/ft b.55.01.17.4520.
  • [3] SINGH V., DAS D., Potential of hydrogen production from biomass, [In:] P.E.V. de Miranda (Ed.), Science and Engineering of Hydrogen-Based Energy Technologies: Hydrogen production and practical applications in energy generation, Academic Press, Elsevier, Inc., 2019, 128.
  • [4] REIG M., VECINO X., CORTINA J.L., Use of membrane technologies in dairy industry: an overview, Foods, 2021, 10 (11), 2768. DOI: 10.3390/foods10112768.
  • [5] Membrane filtration technology for dairy, https://www.pcimembranes.com/dairy/
  • [6] DAUFIN G., ESCUDIER J.-P., CARRÈRE H., BÉROT S., FILLAUDEAU L., DECLOUX M., Recent and emerging applications of membrane processes in the food and dairy industry, Food Bioprod. Proc., 2001, 79 (2), 89–102.
  • [7] KASHANINEJAD M., RAZAVI S.M.A., VARIDI M., The effect of temperature and transmembrane pressure on the camel milk ultrafiltration performance: an optimization study, J. Membr. Sci. Res., 2021, 7, 288–294. DOI: 10.22079/JMSR.2021.521519.1432.
  • [8] MEMISI N., VESKOVIC MORACANIN S., MILIJASEVIC M., BABIC J., DJUKIC D., CIP cleaning processes in the dairy industry, Proc. Food Sci., 2015, 5, 184–186.
  • [9] 5 steps in common food, dairy, and beverage clean-in-place cycle, https://www.csidesigns.com/blogalin/articles/5-steps-in-a-common-food-dairy-beverage-clean-in-place-cycle, available online (1.08.2022).
  • [10] YAN M.J., HOLDEN N.M., Water use efficiency of Irish dairy processing, J. Dairy Sci., 2019, 102 (10), 9525–9535. DOI: 10.3168/jds.2019-16518.
  • [11] GUERRERO-NAVARRO A.E., RÍOS-CASTILLO A.G., RIPOLLES-AVILA C., ZAMORA A., HASCOET A.S., FELIPE X., CASTILLO M., RODRÍGUEZ-JEREZ J.J., Effectiveness of enzymatic treatment for reducing dairy fouling at pilot-plant scale under real cleaning conditions, LWT – Food Sci. Technol., 2022, 154, 112634. DOI: 10.1016/j.lwt.2021.112634.
  • [12] SUÁREZ L., DIEZ M.A., RIERA F.A., Recovery of detergents in food industry: an industrial approach, Desalin. Water Treat., 2015, 56 (4), 967–976.
  • [13] FERNÁNDEZ P., RIERA F.A., ÁLVAREZ R., ÁLVAREZ S., Nanofiltration regeneration of contaminated single-phase detergents used in the dairy industry, J. Food Eng., 2010, 97 (3), 319–328.
  • [14] One-Step CIP Detergent, https://agrochemusa.com/product/one-step-cip-detergent-2, available online (1.08.2022).
  • [15] BRIAO V.B., VIEIRA SALLA A.C., MIORANDO T., HEMKEMEIER M., CADORE FAVARETTO D.P., Water recovery from dairy rinse water by reverse osmosis: Giving value towater and milk solids, Res. Cons. Recycl., 2019, 140, 313–323. DOI: 10.1016/j.resconrec.2018.10.007.
  • [16] ALALAM S., CHAMBERLAND J., GRAVEL A., PERREAULT V., BRITTEN M., POULIOT Y., LABRIE S., DOYEN A., Valorization of concentrated dairy white wastewater by reverse osmosis in model cheese production, Dairy, 2022, 3 (2), 248–261. DOI: 10.3390/dairy3020020.
  • [17] KOWALSKA I., Concentration of contaminated single-phase detergents by means of unit and integrated membrane processes, Sep. Sci. Technol., 2016, 51 (7), 1199–1209. DOI: 10.1080/01496395.2016.1146298.
  • [18] BAZINET L., CASTAIGNE F., POULIOT Y., Relative contribution of proteins to conductivity changes in skim milk during chemical acidification, Appl. Eng. Agric, 2005, 21 (3), 455–464.
  • [19] BAZINET L., POULIOT Y., CASTAIGNE F., Relative contributions of charged species to conductivity changes in skim milk during electrochemical acidification, J. Membr. Sci., 2010, 352 (1–2), 32–40.
  • [20] BATOOL M., SHAFEEQ A., HAIDER B., AHMAD N.M., TiO2 nanoparticle filler-based mixed-matrix PES/CA nanofiltration membranes for enhanced desalination, Membr., 2021, 11 (6), 433. DOI: 10.3390/membranes11060433.
  • [21] HOFS B., OGIER J., VRIES D., BEERENDONK E.F., CORNELISSEN E.R., Comparison of ceramic and polymeric membrane permeability and fouling using surface water, Sep. Sci. Technol., 2011, 79 (3), 365–374. DOI: 10.1016/j.seppur.2011.03.025.
  • [22] SANU S.M., CHANDRAN A., GEJO G., SAJNA M.S., VALPARAMBIL P., KUMI-BARMIAH E., GIN J., BIJU P.R., CYRIAC J., UNNIKRISHNAN N.V., Development of thick superhydrophilic TiO2−ZrO2 transparent coatings realized through the inclusion of poly(methyl methacrylate) and Pluronic-F127, ACS Omega, 2018, 3 (11), 14924–14932. DOI: 10.1021/acsomega.8b01940.
  • [23] OH N.W., JEGAL J., LEE K.H., Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). I. preparation and modification of PAN supports, J. Appl. Polym. Sci., 2001, 80, 1854–1862. DOI: 10.1002/app.1282.
  • [24] GUL A., HRUZA J., DVORAK L., YALCINKAYA F., Chemical cleaning process of polymeric nanofibrous membranes, Polymers, 2022, 14 (6), 1102. DOI: 10.3390/polym14061102.
  • [25] D'SOUZA N.M., MAWSON A.J., Membrane cleaning in the dairy industry: a review, Crit. Rev. Food Sci. Nutr., 2005, 45 (2), 125–134.
  • [26] MADAENI S.S., MANSOURPANAH Y., Chemical cleaning of reverse osmosis membranes fouled by whey, Des., 2004, 161 (1), 13–24.
  • [27] ZHAO Y.J., WU K.F., WANG Z.J., ZHAO L., LI S.S., Fouling and cleaning of membrane – a literature review, J. Environ. Sci., 2000, 12 (2), 241–251.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78cc8a0a-5d01-4800-b3f5-773ac0154ad7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.