PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption behavior and XPS analysis of nonylphenol ethoxylate on low rank coal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, low rank coal was used for the removal of nonylphenol ethoxylate with fifteen ethylene oxide groups (NPEO15) from aqueous solutions at different contact times, temperatures, and initial adsorbent concentrations. The adsorption isotherms showed good fit with the Langmuir equation. Maximum adsorption capacities calculated at 308, 318, and 328 K were 23.64, 29.41, and 35.71 mg g–1, respectively. The changes in the free energy of adsorption (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were calculated in order to predict the nature of adsorption. The results of the thermodynamic analysis indicated that a spontaneous process took place, driven synergistically by both enthalpy and entropy. The adsorption kinetics of NPEO15 were consistent with a pseudo-second order reaction model. XPS results showed that the oxygen functional groups on the low rank coal surface were significantly covered by NPEO15. Furthermore, while the content of C–C/C–H functional groups increased significantly, that of C–O functional groups decreased after absorption. These results clearly indicate that low rank coal is more hydrophobic and displays better floatability.
Rocznik
Strony
721--731
Opis fizyczny
Bibliogr. 42 poz., rys. kolor.
Twórcy
autor
  • Shandong University of Science and Technology
autor
  • Shandong University of Science and Technology
autor
  • Shandong University of Science and Technology
autor
  • Shandong University of Science and Technology
autor
  • Shandong University of Science and Technology, No. 579, Qianwangang Road, Economics and Technology Development Zone, 266590 Qingdao, China
Bibliografia
  • BOYLU, F., LASKOWSKI, J. S., 2007. Rate of water transfer to flotation froth in the flotation of low-rank coal that also requires the use of oily collector. Int. J. Miner. Process. 83, 125-131.
  • CAO, X., YAN, B., WANG, Q., WANG, Y., QIU, J., HUANG, Y., LI, L., ZHANG, Y., HU, S., KANG, L., 2016. Adsorption of Cr (VI) from Aqueous Solutions on Organic Modified Laponite. Chemical Journal of Chinese Universities -Chinese Edition-. 38, 173-181.
  • CEBECI, Y., 2002. The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors. Fuel. 81, 281-289.
  • CELIK, M., 1989. Adsorption of ethoxylated sulfonate and nonionic homologs on coal. J. Colloid Interface Sci. 129, 428-440.
  • CELIK, M., YOON, R., 1991. Adsorption of poly (oxyethylene) nonylphenol homologs on a low-ash coal. Langmuir. 7, 1770-1774.
  • CELIK, M. S., SEYHAN. K., 1995. Effect of Heat Treatment on the Flotation of Turkish Lignites. Coal Preparation. 65-79.
  • CHANDER, S., POLAT, H., MOHAL, B., 1994. Flotation and wettability of a low-rank coal in the presence of surfactants. Mining, Metallurgy and Exploration. 11, 55-61.
  • CHENG, J.-Y., WANG, P., MA, J.-P., LIU, Q.-K., DONG, Y.-B., 2014. A nanoporous Ag (I)-MOF showing unique selective adsorption of benzene among its organic analogues. Chem. Commun. 50, 13672-13675.
  • CINAR, M., 2009. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment. Fuel Process. Technol. 90, 1300-1304.
  • CRINI, G., PEINDY, H. N., GIMBERT, F., ROBERT, C., 2007. Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 53, 97-110.
  • DEY, S., 2012. Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview. Fuel Process. Technol.94, 151-158.
  • FAN, J., YANG, W., LI, A., 2011. Adsorption of phenol, bisphenol A and nonylphenol ethoxylates onto hypercrosslinked and aminated adsorbents. React. Funct. Polym. 71, 994-1000.
  • FURLONG, D. N., ASTON, J. R., 1982. Adsorption of polyoxyethylated nonyl phenols at silica/aqueous solution interfaces. Colloids and Surfaces. 4, 121-129.
  • HARRIS, G., DIAO, J., FUERSTENAU, D., 1995. Coal flotation with nonionic surfactants. Coal Perparation. 16, 135-147.
  • HE, M., ZHANG, W., CAO, X., YOU, X., LI, L., 2018. Adsorption Behavior of Surfactant on Lignite Surface: A Comparative Experimental and Molecular Dynamics Simulation Study. Int. J. Mol. Sci. 19, 437.
  • HUA, Y., NIE, W., CAI, P., LIU, Y., PENG, H., LIU, Q., 2018. Pattern characterization concerning spatial and temporal evolution of dust pollution associated with two typical ventilation methods at fully mechanized excavation faces in rock tunnels. Powder Technol. 334, 117-131.
  • JIA, R., HARRIS, G. H., FUERSTENAU, D. W., 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process. 58, 99-118.
  • KIM, S. K., PARK, J. Y., LEE, D. K., HWANG, S. C., LEE, S. H., RHEE, Y. W., 2015. Kinetic Study on Low-Rank Coal Char: Characterization and Catalytic CO2 Gasification. Journal of Energy Engineering. 142, 4-15.
  • KLIMENKO, N., 1980. Influence of micelle formation in aqueous solutions on the adsorption of oxyethylated nonionic surfactants in the carbon non-porous adsorbent (acetylene soot). Kolloidn. Zh. 42, 561-566.
  • LI, J., CUI, H., SONG, X., ZHANG, G., WANG, X., SONG, Q., WEI, N., TIAN, J., 2016. Adsorption and intercalation of organic pollutants and heavy metal ions into MgAl-LDHs nanosheets with high capacity. RSC Advances. 6, 92402-92410.
  • LI, L., LU, X., QIU, J., LIU, D., 2013. Effect of microemulsified collector on froth flotation of coal. J. S. Afr. Inst. Min. Metall. 113, 877-880.
  • LIU, Q., NIE, W., HUA, Y., PENG, H., LIU, Z., 2018. The effects of the installation position of a multi-radial swirling aircurtain generator on dust diffusion and pollution rules in a fully-mechanized excavation face: A case study. PowderTechnol. 329, 371-385.
  • LIU, W., XU, S., ZHAO, X., YUAN, G., MIMURA, H., 2013. Adsorption mechanism of chlorides on carbon nanotubes based on first-principles calculations. Chem. Phys. Lett. 580, 94-98.
  • LIU, X., LIU, S., FAN, M., ZHANG, L., 2017. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel. 197, 474-481.
  • LYU, X., YOU, X., HE, M., ZHANG, W., WEI, H., LI, L., HE, Q., 2018. Adsorption and molecular dynamics simulations of nonionic surfactant on the low rank coal surface. Fuel. 211, 529-534.
  • MCCRACKEN, J., DATYNER, A., 1977. Molecular heterogeneity in relation to the adsorption of alkylaryl polyoxyethylene nonionic surfactants. J. Colloid Interface Sci. 60, 201-203.
  • PIETRZAK, R., 2009. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel. 88, 1871-1877.
  • SILVA, J. P., SOUSA, S., RODRIGUES, J., ANTUNES, H., PORTER, J. J., GON ALVES, I., FERREIRA-DIAS, S., 2004. Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Sep. Purif. Technol. 40, 309-315.
  • SOMASUNDARAN, P., ZHANG, L., FUERSTENAU, D. W., 2000. The effect of environment, oxidation and dissolved metal species on the chemistry of coal flotation. Int. J. Miner. Process. 58, 85-97.
  • TEMEL, H., BOZKURT, V., AYHAN, F., 2010. Desulfurization and deashing of adiyaman-gölbaşi lignite by flotation. Energy Sources, Part A. 32, 727-743.
  • TIAN, B., QIAO, Y. Y., TIAN, Y. Y., LIU, Q., 2016a. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG–FTIR. J. Anal. Appl. Pyrolysis. 121, 376-386.
  • TIAN, B., QIAO, Y. Y., TIAN, Y. Y., XIE, K. C., LIU, Q., ZHOU, H. F., 2016b. FTIR study on structural changes of different–rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent. Fuel Processing Technology. 154, 210-218.
  • VADIVELAN, V., KUMAR, K. V., 2005. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 286, 90-100.
  • VAMVUKA, D., AGRIDIOTS, V., 2001. Effect of chemical reagents on lignite flotation. Int. J. of Miner. Process. 61, 209–224.
  • WANG, H., NIE, W., CHENG, W., LIU, Q., JIN, H., 2017. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully-mechanized working face. Adv Powder Technol. 29, 230-244.
  • WANG, L., SUN, W., HU, Y.-H., XU, L.-H., 2014. Adsorption mechanism of mixed anionic/cationic collectors in Muscovite–Quartz flotation system. Miner. Eng. 64, 44-50.
  • XIA, W., YANG, J., LIANG, C., 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technol. 237, 1-8.
  • YOU, X., LI, L., LIU, J., WU, L., HE, M., LYU, X., 2017. Investigation of particle collection and flotation kinetics within the Jameson cell downcomer. Powder Technol. 310, 221-227.
  • YOU, X., HE, M., ZHANG, W., WEI, H., LYU, X., HE, Q., LI, L., 2018. Molecular dynamics simulations of nonylphenol ethoxylate on the Hatcher model of subbituminous coal surface. Powder Technol. 332, 323-330.
  • YOU, X., HE, M., ZHU, X., WEI, H., CAO, X., WANG, P., LI, L., 2019. Influence of surfactant for improving dewatering of brown coal: A comparative experimental and MD simulation study. Sep. Purif. Technol. 210, 473-478.
  • ZHOU, G., XU, C., CHENG, W., ZHANG, Q., NIE, W., 2015. Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment. J. Anal. Methods Chem. 2015, 1-8.
  • ZHOU, G., QIU, H., ZHANG, Q., XU, M., WANG, J., WANG, G., 2016. Experimental Investigation of Coal Dust Wettability Based on Surface Contact Angle. J Chem-NY. 2016, 13-18.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78c768dc-a63c-4bb9-ba00-75ddacb22e80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.