PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The optimal design of fractional sliding mode control based on multi-objective genetic algorithms for a two-link flexible manipulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a novel optimal approach of control strategy is introduced by applying fractional calculus in the structure of sliding mode control for a range of dynamics system liable to ambiguity. So, a fractional sliding mode control was designed for dynamics of the two-link rigid-flexible manipulator. Furthermore, a multi-objective genetic algorithm was proposed in order to find the ideal variable structure of the sliding mode control. Optimal variables were achieved by the optimization of the conventional sliding mode control. Then the performance of both the conventional and the fractional sliding mode control were compared with respect to optimal variables. Results indicated that by applying the optimized fractional sliding mode control, the system’s error was significantly reduced consequently tracking the desired value was done with a higher degree of accuracy and a smoother control action was achieved.
Twórcy
autor
  • Department of Mechanical Engineering, University Campus 2, University of Guilan, Rasht, Iran
  • School of Mechanical Engineering, Islamic Azad University, Science and Research Branch of Tehran (Central), Hesarak, Tehran, Iran
Bibliografia
  • 1. Aghababa M. 2015. A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers, Applied Mathematical Modelling, 39, 6103–6113.
  • 2. Baleanu D., Güvenç Z.B. 2010. New trends in nanotechnology and fractional calculus applications. Dordrecht [etc.]. Springer.
  • 3. Bisheban M., Mahmoodabadi M.J. 2013. Pareto optimal design of decoupled sliding mode control based on a new multi-objective particle swarm optimization algorithm. Amirkabir International Journal of Science & Research, 45, 31-40.
  • 4. Das S. 2007. Functional Fractional calculus for system identification and controls. Springer Publishing Company, Incorporated.
  • 5. Deb K. 2001. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.
  • 6. Das S., Pan I. 2014. On the mixed H2/H∞ loop-shaping tradeoffs in fractional-order control of the AVR system. IEEE Transactions on Industrial Informatics, 10, 1982-1991.
  • 7. Deb K., Pratap A., Agarwal S., Meyarivan T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2), 182-197.
  • 8. Emel’yanov S.V. 2007. Theory of variable-structure control systems: Inception and initial development. Computational Mathematics and Modeling, 18(4), 321-331.
  • 9. Fonseca C.M., Fleming P.J. 1993. Genetic Algorithms for multiobjective optimization: formulation discussion and generalization. Paper presented at the ICGA.
  • 10. Hamamci S.E. 2007. Stabilization using fractional-order PI and PID controllers. Nonlinear Dynamics, 51(1), 329-343. DOI: 10.1007/s11071-007-9214-5.
  • 11. Mahmoodabadi M.J., Bagheri A., Nariman-Zadeh N., Jamali A., Abedzadeh Maafi R. 2012. Pareto design of decoupled sliding-mode controllers for nonlinear systems based on a multiobjective genetic algorithm. Journal of Applied Mathematics.
  • 12. Pan I., Das S., Das S. 2015. Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems. Applied Mathematical Modelling, 39, 500–514.
  • 13. Pan I., Das S. 2015. Designed a fractional-order PID controller for load-frequency control of two interconnected power systems.
  • 14. Panigrahi B.K., Suganthan P.N., Das S., Dash, S.S. 2013. Swarm, Evolutionary, and Memetic Computing 4th International Conference, SEMCCO 2013, Chennai, India, December 19-21, 2013, Proceedings, Part II. Retrieved from http://dx.doi. org/10.1007/978-3-319-03756-1.
  • 15. Pashaki P.V., Pouya M. 2017. Investigation of high-speed cryogenic machining based on finite element approach. Latin American Journal of Solids and Structures. 14(4), 2017, 629-642.
  • 16. Pashaki P.V., Pouya M. 2016. Volumetric error compensation in five-axis CNC machining center through kinematics modeling of geometric error. Advances in Science and Technology Research Journal, 10(30), 2016, 207-217. DOI: 10.12913/22998624/62921.
  • 17. Pashaki P.V., Pouya M., Maleki V.A. 2017. High-speed cryogenic machining of the carbon nanotube reinforced nanocomposites: Finite element analysis and simulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. Retrieved from https:// doi.org/10.1177/0954406217714012.
  • 18. Perruquetti W. 2002. Sliding mode control in engineering. Marcel Dekker, Inc.
  • 19. Podlubny I. 1999. Fractional differential equations an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Retrieved from http://site.ebrary.com/id/10224992.
  • 20. Sbalzarini I.F., Müller S., Koumoutsakos P. 2000. Multiobjective optimization using evolutionary al-gorithms. Paper presented at the Proceedings of the summer Program.
  • 21. Valério D., da Costa J.S. 2006. Tuning of fractional PID controllers with Ziegler–Nichols-type rules. Signal Processing, 86(10), 2006, 2771-2784.
  • 22. Zhong G., Deng H., Li J. 2015. Chattering-free variable structure controller design via fractional calculus approach and its application. Nonlinear Dynamics, 81, 679–694.
  • 23. Zhong F., Li H., Zhong S. 2016. State estimation based on fractional order sliding mode observer method for a class of uncertain fractional-order nonlinear systems. Signal Processing, 127, 168–184.
  • 24. Zinober A.S.I. 1989. Deterministic control of uncertain systems. London: Peregrinus.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78c20c48-8b69-478b-b320-aedf1a2a345e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.