Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Land degradation is primarily caused by direct destruction of the natural ecosystems, irrational use and depletion of the land resources, and the growing agrotechnogenic load on soils. Contemporary scientific research has been carried out by means of field route studies and land inventory to determine the geomorphological and soil characteristics of the studied polygons, taking into account the basic principles of application in the geospatial analysis and practical use in the landscape studies by means of the Auto CAD computer program, the boundaries of the polygons – watersheds on raster topographic maps being determined, digitized in the local coordinate system (SK-63). It has been established that the introduction of a set of measures for the conservation of the degraded lands of the sloped agrolandscape systems by stopping intensive economic activity with subsequent use of the land plots as hayfields and pastures, ensured a significant reduction in soil loss due to erosion, while the soil loss on heavily and moderately eroded soils of the studied sites amounted to 2.38–4.19 t·ha-1, which differs slightly from the maximum permissible standard indicators of soil loss for the heavily and moderately eroded soils. The main characteristics of the agrochemical, agrophysical and other properties of the washed-out chernozems have stabilized during the conservation period. At the same time, the humus content in the cultivated soil layer has increased to 3.85%, the optimal values are characterized by the soil acidity pH 7.1–7.3 (close to neutral). Attention has been focused on the specifics of the land conservation by excluding it from economic circulation with its subsequent use as pasture and hay lands.
Czasopismo
Rocznik
Tom
Strony
15--27
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
- Latvia University of Life Sciences and Technologies, 2, Liela str., Jelgava, LV-3001, Latvia
autor
- National Scientific Centre, Institute of Agriculture of NAAS of Ukraine, 2b, Mashinobudivnikiv Str., Chabany vil., Kyiv-Svyatoshin Dist., UA 08162, Kyiv Region, Ukraine
autor
- National Scientific Centre, Institute of Agriculture of NAAS of Ukraine, 2b, Mashinobudivnikiv Str., Chabany vil., Kyiv-Svyatoshin Dist., UA 08162, Kyiv Region, Ukraine
autor
- National University of Life and Environmental Sciences of Ukraine, 15, Heroyiv Oborony Str., Kyiv, UA 03041, Ukraine
autor
- National University of Life and Environmental Sciences of Ukraine, 15, Heroyiv Oborony Str., Kyiv, UA 03041, Ukraine
autor
- National University of Life and Environmental Sciences of Ukraine, 15, Heroyiv Oborony Str., Kyiv, UA 03041, Ukraine
autor
- Lublin University of Technology, Nadbystrzycka 38d, 20-618 Lublin, Poland
Bibliografia
- 1. Aiello, A., Adamo, M. and Canora, F. (2015). Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at River Basin scale in Southern Italy. Catena, 131, 174–158. https://doi.org/10.1016/j.catena.2015.04.003
- 2. Allafta, H., & Opp C. (2022). Soil erosion assessment using the RUSLE model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran). Applied sciences, 12(15), 7776. https://doi.org/10.3390/app12157776
- 3. Auerswald, K. (1992). Predicted and measured sediment loads of large watersheds in Bavaria. In Proceedings of the Fifth International Symposium on River Sedimentation, Karlsruhe, Germany, 6–10 April 1992. 1031–1036. [Google Scholar]
- 4. Auerswald, K. (2008). Water erosion. In: The Encyclopaedia of Soil Science, W. Chesworth (Ed.). Springer-Verlag, 817–822. [Google Scholar]
- 5. Bajrak, G. (2018). Methods of geomorphological research. Lviv: Ivan Franko National University of Lviv, 292 [in Ukrainian].
- 6. Balabukh, V. O. (2008). Variability of rains and downpours in Ukraine. Naukovi pratsi UkrNDHMI, 257, 61–72 [in Ukrainian].
- 7. Baliuk, S. A., Nosko B. S., Zaryshniak A. S., Lisovyi M. V. (2015). Agrochemical service in the system of factors for preserving and improving soil fertility. Kharkiv: TOV Smuhasta typohrafiia [in Ukrainian].
- 8. Baliuka, S. A. Tovakhnianskoho, L. L. (2008). The concept of soil erosion protection in Ukraine. za red. Kharkiv: Instytut hruntoznavstva ta ahrokhimii im. O.N. Sokolovskoho [in Ukrainian].
- 9. Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. V., Montanarella, L., Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1), 2041–1723. https://doi.org/10.1038/s41467-017-02142-7
- 10. Bulyhin, S. Yu. (2015) Land quality as a basis for land use control. Ahroekolohichnyi zhurnal 1, 26–46 [in Ukrainian]. Kyiv: Ahrarna nauka [in Ukrainian].
- 11. Bulyhin, S.Yu., Achasov A.B., Achasova A.O. (2014) Land quality assessment and forecasting system (status, concept and algorithms). Kyiv: Ahrarna nauka [in Ukrainian].
- 12. Bulyhyn, S.Yu., Belolynskyi V.A. (2012). Soil and water optimisation of agricultural landscapes. Kyiv: Ahrarna nauka [in Russian].
- 13. Dahanayake, A.C., Webb J.A., Greet J., Brookes J.D. (2024) How do plants reduce erosion? An Eco Evidence assessment. Plant Ecology, 225. 593–604. https://doi.org/10.1007/s11258-024-01414-9
- 14. DSTU 4115-2002. (2022). Soils quality. Determination of mobile compounds of phosphorus and potassium according to the modified Chirikov method. Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 15. DSTU 4289:2004. (2004). Soil quality. Method for determining organic matter. Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 16. DSTU 4770 (1, 2, 3, 4, 6, 7, 9)-2007. (2007). Soil quality. Determination of the content of mobile compounds Mn, Zn, Cd, Fe, Cu, Ni, Pb in the buffered acetate-ammonium extract. Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 17. DSTU 7537:2014. (2014). Soil quality. Determination of hydrolytic acidity. Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 18. DSTU 7862:2015. (2015). Soil quality. Determination of active acidity. Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 19. DSTU 7863:2015. (2015). Soil quality. Determination of easily hydrolysable nitrogen by the Kornfield method. Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 20. DSTU 7921:2015. (2015). Soil quality. Large-scale study of soil cover. General requirements. Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 21. DSTU ISO 10390:2022. (2022). Soil quality. Determination of pH (ISO 10390:2019, IDT). Kyiv: Derzhstandart Ukraine [in Ukrainian].
- 22. Dutta, D., Das, S., Kundu, A., Taj, A. (2015). Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Modeling Earth Syst. Environ, 1, 37. Retrieved from: https://link.springer.com/article/10.1007/s40808-015-0034-1
- 23. El Jazouli, A., Barakat, A., Ghafiri, A. et al. (2017). Soil erosion modelled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett. 4, 25. https://doi.org/10.1186/s40562-017-0091-6
- 24. England, N. (2011). Think BIG: How and why landscape-scale conservation benefits wildlife, people and the wider economy. Produced for the England Biodiversity Group, 44. Retrieved from: http://publications.naturalengland.org.uk/publication/30047.
- 25. Jothimani, M., Getahun, E., Abebe, A., Gunalan, J., Shano, L., Oyda, Y. (2024). Application of Geospatial Technologies and AHP Technique in the Identification of Soil Erosion-Prone Zones in the Rift Valley, Southern Ethiopia. In: Choudhury, T., Koley, B., Nath, A., Um, JS., Patidar, A.K. (eds) Geo-Environmental Hazards using AI-enabled Geospatial Techniques and Earth Observation Systems. Advances in Geographic Information Science. Springer, Cham. https://doi.org/10.1007/978-3-031-53763-9_4
- 26. Kaminskyi, V., Kolomiiets, L., Bulgakov, V., Olt, J. (2021). An investigation into the state of agricultural lands under water erosion conditions. Agronomy Research. 19(2), 458–471. https://doi.org/10.15159/AR.21.029
- 27. Kovalchuk, I.P., Chalov, R.S. (1992). Ecological and geomorphological aspects of studying erosion-accumulative processes in the basins of different-rank rivers of developed region. Problemi erozionnikh ruslovikh i ustevikh protsessov: Tezi doklada mezhvuzovikh soveshchanii– Ishchevsk. 45–47. [in Russian].
- 28. Krasovskyi, H. Ya., Petrosov, V.A. (2003). Information technologies for space-based monitoring of aquatic ecosystems and forecasting urban water consumption. Kyiv: Naukova Dumka [in Ukrainian].
- 29. Lialko, V.I., Yelistratova, L.O., Apostolov, O.A. (2018). Rapid assessment of erosion-prone areas of soil cover on the territory of Ukraine using remote sensing data with consideration of climatic factors and vegetation. Dopovidi NAN Ukrainy, 3, 87–94 [in Ukrainian].
- 30. Lialko, V.I., Yelistratova, L.O., Apostolov, O.A., Chekhnii, V.M. (2017). Analysis of soil-erosion processes in Ukraine based on the use of remote sensing data. Visnyk NAN Ukrainy, 10, 34–41 [in Ukrainian]. https://doi.org/10.15407/visn2017.10.034
- 31. Lialko, V., Popov, M., Stankevych, S. (2014). Remote sensing polygons in Ukraine: current status and directions for further research and development. Ukrainian Metrological, 2, 15–26 [in Ukrainian].
- 32. Lialko, V.I., Yelistratova, L.O., Apostolov, O.A. (2018). Rapid assessment of erosion-prone areas of soil cover on the territory of Ukraine using remote sensing data with regard to climatic factors and vegetation. Dopovid Natsionalnoi akademii nauk Ukrainy 3, 87–94 [in Ukrainian]. https://doi.org/10.15407/ dopovidi2018.03.087
- 33. Mesfln, A. (1994). The Nile-source of regional cooperation or conflict. In Proceedings of the Eighth Iwra World Congress on Water Resources “Satisfying Future National and Global Water Demand”, Cairo, Egypt, 21–25 November 1994. [Google Scholar]
- 34. Morgan, R.P.C. Quinton, J.N. Smith, R.E. Govers, G. Poesen, J.W.A. Chisci, G. Torri, D. (1998). The EUROSEM Model. In: Boardman J., Fvis-Mortlock D. (eds) Modelling Soil Erosion by Water. NATO ASI Series (Seri I: Global Environmental Change). V. 55. Springer, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-58913-3_29
- 35. Nesterchuk, I.K. (2007). Geoecological approach to the problem of nature management: theoretical aspects and methodology. Fizychna geografiya ta geomorfologiya, 52, 51–66 [in Ukrainian].
- 36. Panagos, P., Borrelli, P., Meusburger, C., Alewell, C., Lugato, E., Montanarella, L. (2015). Estimating the soil erosion cover-management factor at European scale. Land Use policy journal. 48, 38–50.
- 37. Panagos, P., Borrellia, P., Meusburgerb, K., Alewellb, С., Lugatoa, Е., Montanarella L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38–50. http://dx.doi.org/10.1016/j.landusepol.2015.05.021
- 38. Pasquale, B., Robinson D. A., Fleischer L.R. et al. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 1. Retrieved from: https://www.nature.com/articles/s41467-017-02142-7.
- 39. Pichura, V.I. (2016). Geomodelling of water-erosion processes in the Dnipro River basin. Ahroekolohichnyi zhurnal 4, 66–73 [in Ukrainian].
- 40. Popov, M.A., Stankevych, S. A., Kozlova, A.A. (2012). Remote land degradation risk assessment using space images and geospatial modelling. Dopovidi NAN Ukrainy, 6, 100–104 [in Ukrainian].
- 41. Renard, K.G., Foster, G.R., Wessies, G.A., Porter, J.P. (1991). RUSLE-Revised universal soil loss equation. Journal of Soil and Water Conservation, 46, 30–33.
- 42. Report (2013). Rural Development in the European Union: statistical and economic information. Retrieved from: http://ec.europa.eu/agriculture/statistics/rural- development/2013/full-text_en.pdf.
- 43. Rucins, А., Kaminskyi, V., Kolomiiets, L., Bulgakov, V., Olt, J., Kaminska, V., Shevchenko, I., Ihnatiev, Y. (2024). Research into soil resource management technologies in context of aggravating exogenic processes. Journal of Ecological Engineering (JEE), 25(6), 128–143. https://doi.org/10.12911/22998993/186950
- 44. Senol, C., & Tas, M.A. (2023). Trends of changing land use dynamics in the Terkos Lake basin between 1980 and 2023 and their impact on natural ecosystems. Frontiers in Life Sciences and Related Technologies, 4(1), 20–31. https://doi.org/10.51753/flsrt.1250948
- 45. Shuang, W., Chao, Z., Changxu, L., Zhurong, X. (2008). Study on Soil erosion Dynamic monitoring Based on “3S” technology. IOP Conf. Series: Earth and Environmental Science 208. https://doi.org/10.1088/1755-1315/208/1/012088
- 46. Terranova, O., Antronico, L., Coscarelli, R., Iaquinta, P. (2009). Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology, 112, 228–245.
- 47. Udayagee K. (2021). A review on new technologies in soil erosion management. Journal of research technology and engineering, 2(1), https://jrte.org/wp-content/uploads/2021/01/A-review-on-new-technologies-in-soil-erosion-management.pdf
- 48. Velychko, V.A. (2010). Ecology of soil fertility. Kyiv: Ahrarna nauka [in Ukrainian].
- 49. Wang, X., Zhao, Z., Han, X., Liu, J., Kitch, J., Liu, Y., Yang, H. (2022). Evaluating the evolution of soil erosion under catchment farmland abandonment using lakeshore sediment. Sustainability 14, 12241. https://doi.org/10.3390/su141912241
- 50. Weslati, O., Serbaji, M.M. (2024). Spatial assessment of soil erosion by water using RUSLE model, remote sensing and GIS: a case study of Mellegue Watershed, Algeria–Tunisia. Environ Monit. Assess 196, 14. https://doi.org/10.1007/s10661-023-12163-z
- 51. Zuazo, V.H.D., Pleguezuelo, C.R.R. (2009). Soil-Erosion and Runoff Prevention by Plant Covers: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8,_48.
- 52. Zubov, A.O., Ilienko, T.V., Bilokin, O.A. (2023). Assessment of the environmental danger of natural dumps for agricultural land in agro-industrial landscapes. Kyiv: Ahrarna nauka [in Ukrainian].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78c08f13-0d42-4d85-badc-0a8015ba9408
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.