PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic Constructions of Computable Objects and a Computable Version of Lovász Local Lemma

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A nonconstructive proof can be used to prove the existence of an object with some properties without providing an explicit example of such an object. A special case is a probabilistic proof where we show that an object with required properties appears with some positive probability in some random process. Can we use such arguments to prove the existence of a computable infinite object? Sometimes yes: following [8], we show how the notion of a layerwise computable mapping can be used to prove a computable version of Lovász local lemma.
Wydawca
Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
  • LIRMM - Laboratoire Informatique Robotique Micro´electronique Montpellier CNRS and Universit´e Montpellier 2, France
autor
  • LIRMM - Laboratoire Informatique Robotique Micro´electronique Montpellier CNRS and Universit´e Montpellier 2, France
Bibliografia
  • [1] Erdös P., Lovász L., Problems and results of 3-chromatic hypergraphs and some related questions. In: A. Hajnal, R. Rado, V. T. Sós, Eds. Infinite and Finite Sets. North-Holland, II, 609–627.
  • [2] Hoyrup M., Rojas C., Applications of Effective Probability Theory to Martin-Löf Randomness. Lectures Notes in Computer Science, 2009, v. 5555, p. 549–561.
  • [3] Miller J., Two notes on subshifts. Available from http://www.math.wisc.edu/ jmiller/downloads.html
  • [4] Moser R. A., Tardos G., A constructive proof of the general Lovász Local Lemma, Journal of the ACM, 2010, 57(2), 11.1–11.15. See also: http://arxiv.org/abs/0903.0544.
  • [5] Rumyantsev A., Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences, STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23–25, 2006. Lecture Notes in Computer Science, 3884, Springer, 2006, p. 396–407.
  • [6] Rumyantsev A., Kolmogorov Complexity, Lovász Local Lemma and Critical Exponents. Computer Science in Russia, 2007, Lecture Notes in Computer Science, 4649, Springer, 2007, p. 349-355.
  • [7] Rumyantsev A., Everywhere complex sequences and probabilistic method, arxiv.org/abs/1009.3649
  • [8] Rumyantsev A., Infinite computable version of Lovasz Local Lemma, arxiv.org/abs/1012.0557
  • [9] Zvonkin A. K., Levin L. A., The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms, Uspekhi Matematicheskikh Nauk, 1970, v. 25, no. 6 (156), p. 85–127.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78b5a10c-6087-40c0-8476-96ae8e5ae61b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.