PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of a Primary Air Distribution in a Plenum Chamber of the 700 MWth Circulating Fluidized Bed Boiler

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The windbox is a compressed air chamber installed directly beneath the fluidized bed boiler grid and is designed to evenly distribute air across the entire cross-section of the air distributor. Due to the large volume of the plenum chambers, it is very difficult to experimentally determine the flow conditions within them. Therefore, the analysis of airflow in these devices is usually performed using computational fluid dynamics tools. The article presents the results of modeling primary air distribution in the plenum chamber of the 700 MWth circulating fluidized bed boiler operating in PGE GiEK S.A. Turów Power Plant Division. Based on the results of calculations performed using the ANSYS Fluent software, the basic problems of the design windbox geometry were identified and a method for improving the uniformity of the gas flow under the grid was proposed. As can be seen from the results obtained, the design geometry of the windbox does not provide the required uniformity of air distribution under the grid.
Twórcy
autor
  • Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Dabrowskiego 73, 42-201 Czestochowa, Poland
Bibliografia
  • 1. Reddy Karri S.B., Werther J. Gas distributor and plenum design in fluidized beds. Chapter 6 in: Wen-Ching Yang Handbook of Fluidization and Fluid-Particle Systems, Siemens Westinghouse Power Corporation, Pittsburgh, Pennsylvania, USA, Marcel Dekker Inc., 2003.
  • 2. Passos M.L., Barrozo M.A.S., Mujumdar A.S. Fluidization Engineering – practice, 2nd expanded edition, Laval, Canada, 2014. 3. Basu P. Combustion and Gasification in Fluidized Beds, Butterworth Heinemann, Taylor and Francis Group, LLC, 2006.
  • 4. Mirek P., Jabłoński J., Nowak W. Numerical optimization of air flow in the plenum chamber of an industrial CFB boiler. Task Quarterly. 2008; 12(3): 237–244.
  • 5. Mirek P. Air flow optimization and gas-solid flow similitude in circulating fluidized bed boilers, Publishing House of the Czestochowa University of Technology. 2012; 240.
  • 6. Lirag R.C.Jr., Littman H. Statistical study of the pressure fluctuations in a fluidized bed. American Institute of Chemical Engineers Symposium Series. 1971; 67: 11–22.
  • 7. Geldart D., Baeyens J. The design of distributors for gas-fluidized beds. Powder Technology. 1985; 42: 67–78.
  • 8. Baird M.H.I., Klein A.J. Spontaneous oscillation of a gas-fluidized bed. Chemical Engineering Science. 1973; 28: 1039–1048.
  • 9. Moritomi H., Mori S., Araki K., Moriyama A. Periodic pressure fluctuations in a gaseous fluidized bed. Kagaku Kogaku Ronbushu. 1980; 6: 392–396.
  • 10. Kage H., Iwasaki N., Matsuno Y. Frequency analysis of pressure fluctuation in plenum as a diagnostic method for fluidized beds. American Institute of Chemical Engineers Symposium Series. 1993; 89: 184–190.
  • 11. Kage H., Agari M., Ogura H., Matsuno Y. Frequency analysis of pressure fluctuation in fluidized bed plenum and its confidence limit for detection of various modes of fluidization. Advanced Powder Technology. 2000; 11: 459–475.
  • 12. Vakhshouri K., Grace J.R. Effects of the plenum chamber volume and distributor geometry on fluidized bed hydrodynamics. Particuology. 2010; 8: 2–12.
  • 13. Bonniol F., Sierra C., Occelli R., Tadrist L. Experimental study of the interaction of a dense gas–solid fluidized bed with its air-plenum. Powder Technology. 2010; 202: 118–129.
  • 14. Sasic S., Leckner B., Johnsson F. Fluctuations and waves in fluidized bed systems: the influence of the air-supply system. Powder Technology. 2005; 153: 176–195.
  • 15. Kamiński Z., Czyż Z., Wendeker M. Wind turbine operation parameter characteristics at a given speed. Advances in Science and Technology Research Journal. 2014; 8(22): 75–82.
  • 16. Czyż Z., Karpiński P., Koçak S. Numerical analysis of the influence of particular parts of the high efficient electric vehicle on the aerodynamic forces. Advances in Science and Technology Research Journal. 2019; 13(4): 1–7.
  • 17. Bhasker C. Simulation of air flow in the typical boiler windbox segments. Advances in Engineering Software. 2002; 33: 793–804.
  • 18. Depypere F., Pieters J.G., Dewettinck K. CFD analysis of air distribution in fluidised bed equipment. Powder Technology. 2004; 145: 176–189.
  • 19. Yan J., Lu X., Wang Q., Kang Y., Li J., Zhou J., Zhang Y., Lv Z., Sun S. Experimental and numerical study on air flow uniformity in the isobaric windbox of a 600 MW supercritical CFB boiler. Applied Thermal Engineering. 2017; 122: 311–321.
  • 20. Reddy Karri S.B., Knowlton T. Gas distributor and plenum design in fluidized beds. Chapter 4 in Wen-Ching Yang Fluidization, Solids Handling, and Processing. Industrial Applications, 1st Edition William Andrew, 1998.
  • 21. Ansys Fluent Theory Guide, ANSYS, Inc., Release 2021 R1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78aa2411-0438-468a-a635-9b1b6acd0f5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.