PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional boundary value problems on the half line

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we focus on the solvability of a fractional boundary value problem at resonance on an unbounded interval. By constructing suitable operators, we establish an existence theorem upon the coincidence degree theory of Mawhin. The obtained results are illustrated by an example.
Rocznik
Strony
265--280
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • University Guelma Laboratory of Applied Mathematics and Modeling P.O. Box 401, Guelma 24000, Algeria
  • University Badji Mokhtar-Annaba Faculty of Sciences Laboratory of Advanced Materials P.O. Box 12, 23000, Annaba, Algeria
autor
  • University Badji Mokhtar-Annaba Faculty of Sciences Laboratory of Advanced Materials P.O. Box 12, 23000, Annaba, Algeria
Bibliografia
  • [1] R.P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half line, Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal. 18 (2011) 2, 235-244.
  • [2] R.P. Agarwal, D. O’Regan, Infinity Interval Problems for Difference and Integral Equations, Kluwer Academic Publisher Dordrecht, 2001.
  • [3] R.P. Agarwal, D. O’Regan, Infinite interval problems modeling phenomena which arise in the theory of plasm,a and electrical potential theory, Stud. Appl. Math. Ill (2003) 3, 339-358.
  • [4] A. Arara, M. Benchohra, N. Hamidi, J.J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal. 72 (2010), 580-586.
  • [5] Y. Chen, X. Tang, Positive solutions of fractional differential equations at resonance on the half-line, Boundary Value Problems (2012) 2012:64, 13 pp.
  • [6] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
  • [7] Y. Cui, Solvability of second-order boundary-value problems at resonance involving integral conditions, Electron. J. Differ. Equ. (2012) 2012:45, 9 pp.
  • [8] W. Feng, J.R.L. Webb, Solvability of three-point boundary value problems at resonance, Nonlinear Anal. Theory, Methods and Appl. 30 (1997), 3227-3238.
  • [9] D. Franco, G. Infante, M. Zima, Second order nonlocal boundary value problems at resonance, Math. Nachr. 284 (2011) 7, 875-884.
  • [10] A. Guezane-Lakoud, A. Kilickman, Unbounded solution for a fractional boundary value problem, Advances in Difference Equations (2014) 2014:154.
  • [11] C.P. Gupta, S.K. Ntouyas, P.Ch. Tsamatos, On an m-point boundary-value problem for second-order ordinary differential equations, Nonlinear Anal. 23 (1994), 1427-1436.
  • [12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, vol. 204, 2006.
  • [13] N. Kosmatov, Multi-point boundary value problems on an unbounded domain at resonance, Nonlinear Anal. 68 (2008) 8, 2158-2171.
  • [14] R. Ma, Existence of positive solutions for second-order boundary value problems on infinity intervals, Appl. Math. Lett. 16 (2003) 1, 33-39.
  • [15] J. Mawhin, Topological degree methods in nonlinear boundary value problems, NSFCBMS Regional Conference Series in Mathematics, Am. Math. Soc, Providence, 1979.
  • [16] D. O’Regan, B. Yan, R.P. Agarwal, Solutions in weighted spaces of singular boundary value problems on the half-line, J. Comput. Appl. Math. 205 (2007), 751-763.
  • [17] X. Su, S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl. 61 (2011), 1079-1087.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78a8d0f6-4784-4d7c-b824-79446cbf97ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.