PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of boundary layer control method on hydrodynamic characteristics and tip vortex creation of a hydrofoil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is currently a significant focus on using boundary layer control (BLC) approach for controlling the flow around bodies, especially the foil sections. In marine engineering this is done with the hope of increasing the lift – to – drag ratio and efficiency of the hydrofoils. In this paper, effects of the method on hydrodynamic characteristics and tip vortex formation of a hydrofoil are studied. Steady water injection at the tip of the hydrofoil is simulated in different conditions by using ANSYS-CFX commercial software. Validity of the proposed simulations is verified by comparing the obtained results against available experimental data. Effects of the injection on the lift, drag, and lift – to – drag ratio are studied and the ranges within which the injection has the most positive or negative effects, are determined. Furthermore, flow pattern and pressure variation are studied upon the water injection to determine the most positive and negative case and to ascertain the main reasons triggering these phenomena.
Rocznik
Tom
Strony
27--39
Opis fizyczny
Bibliogr.34 poz., rys., tab.
Twórcy
autor
  • Amirkabir University of Technology 424 Hafez Ave., 3314 Tehran Islamic Republic of Iran
  • Amirkabir University of Technology 424 Hafez Ave., 3314 Tehran, Iran Islamic Republic of Iran
  • Sharif University of Technology Azadi Ave., 9090 Tehran Islamic Republic of Iran
autor
  • Amirkabir University of Technology 424 Hafez Ave., 03314 Tehran Islamic Republic of Iran
Bibliografia
  • 1. Kroo, I. : Non-planar wings concepts for increases aircraft efficiency. VKI lecture series on Innovative Configurations and Advanced Concepts for Future Civil Aircraft, 2005.
  • 2. Park, K., Lee J. Influence of endplate on aerodynamic characteristics of low-aspect ratio wing in ground effect. J. Mech. Sci. Tech., 22, 2578-2589, 2008.
  • 3. Kaplan S.M., Altman A. : Wake Vortices Measurements for Low Aspect Ratio Wings at Low Reynolds Number. J. Aircraft. 44, 1631-1639, 2007.
  • 4. Mansour, N.N. : Numerical Simulation of the Tip Vortex of a Low Aspect Ratio Wing at Transonic Speed. AIAA, 23, 1143-1149, 1985.
  • 5. McAlister, K.W., Takashi T.K. : NACA 0015 Wing Pressure and Trailing Vortex Measurements. ACSOM Technical Report 91-A-003, California, 1991.
  • 6. Mariani, J., Zilliac G., Chow J., Bradshaw P. : Numerical/ Experimental Study of a Wingtip Vortex in the Near Field. AIAA, 33. 1561-1568, 1995.
  • 7. Englar, R.J. : Circulation control for high lift and drag generation on STOL aircraft. . J. Aircraft, 12, 457-463, 1975.
  • 8. Englar, R.J. Trabouh, L.A., Hemmersly R. : STOL potential of the circulation control wing for high-performance aircraft. J. Aircraft, 25, 236-243, 1978.
  • 9. Wood, N. Nielsen J.: Circulation control airfoils-past, present, future. AIAA. 85-0204, 23rd Aerospace Sciences Meeting, Reno, Nevada, 1985.
  • 10. Wood, N. and Robert, L. : Control of vortical lift on Delta wings by tangential leading-edge blowing. J. Aircraft, 25, 236-243, 1988.
  • 11. Wood, N., Robert, L. and Celik Z. : Control of asymmetric vertical flows over delta wings at high angle of attack. J. Aircraft. 27, 429-435, 1990.
  • 12. Modi, V. Fernando, M. Yokomizo, T. : Drag reduction of bluff bodies through moving surface boundary layer control. AIAA Paper No. 1990-298, 28th Aerospace Sciences Meeting, Reno, Nevada, 1990.
  • 13. Johari, H. and MaManus, K. : Visualization of pulsed vortex generator jets for active control of boundary layer separation. AIAA Paper 1997-2021, 28th Fluid Dynamic Conference, Snowmass Village, Colorado, 1997.
  • 14. McManus, K. Magill, J. : Airfoil performance enhancement using pulsed jet separation control. AIAA Paper 1997-1971, 4th Shear Flow Control Conference, Snowmass Village, Colorado, June 29-July 2, 1997.
  • 15. Zha G, Paxton C. : A novel airfoil circulation augment flow control method using co-flow jet. AIAA Paper 2004-2208, 2nd AIAA Flow Control Conference, Portland, Oregon, 2004.
  • 16. Zha, G., Carrol, B., Paxton, C., Conely C., Wells, A. : High Performance Airfoil Using Co-Flow Jet Flow Control. AIAA Paper 2005-1260, 43rd Aerospace Sciences Meeting, Reno, Nevada, 2005.
  • 17. Gilarranz, J.L., Traun. L.W., Radiniotis. O.K. : A new class of synthetic jet actuators-part 1: design, fabrication and bench top characterization. J. Fluids Eng. 127, 367-376, 2005.
  • 18. Gilarranz, J.L., Traun. L.W., Radiniotis. O.K. : A new class of synthetic jet actuators-part 2: Application to flow separation control. J. Fluids Eng. 127, 377-387, 2005.
  • 19. You, D., Moin, P. : Active control of flow separation over an airfoil using synthetic jets. J. Fluids Struct. 24, 1349-1357, 2008.
  • 20. Agrawal, G., Rediniotis, O.K., Taub, L.W. : An experimental investigation on the effects of pulsed air blowing separation control on NACA 0015. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA Journal, 0, 1-12, 2005. ?
  • 21. Mack, S. Berhm, C., Heine B., Kurz, A., Fasel, H. F. : Experimental investigation of separation and separation control on a laminar airfoil. 4th AIAA Flow Control Conference. Seattle, WA, 2008.
  • 22. Gompertz, K. Bones, J.P. : Combined unsteady wakes and active flow control on a low-pressure turbine airfoil. J. Prop. Power, 5, 990-1000, 2011.
  • 23. Packard, N. O. Thakejr, M. P., Bonilla, C. H., Gompertz, K, Bones, J. : Active control of flow separation on a laminar aircraft. AIAA Journal. 51, (5), 1032-1041, 2013.
  • 24. Gardner, A.D., Ritchter, K., Neuhaus, D. Experimental investigation of high-pressure pulsed blowing for dynamic stall control, CAES Aeronautical J, 5, 185-198, 2014.
  • 25. Zhang, W., Samataney, R. A. : Direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil. Physics of Fluids, 27, 055101, 2015.
  • 26. Mang, X., Yan, X., Hu, H., Liu, F., Luo, S. : Plasma laminar-separation-bubble control over airfoil at low Reynolds numbers. 46th AIAA Plasmadynamics and Lasers Conference, 2015.
  • 27. Hipp, K.D., Walker, M., Benton, S.I., Bones, J. : Control of leading-edge airfoil stall using pulsed jets. 54th AIAA Aerospace Sciences Meeting, 2016.
  • 28. Bernardini, C., Beneton S. I., Hipp, K. D., Bons, J. P. : Large low-frequency oscillations initiated by flow control on a poststall airfoil, ? 2016.
  • 29. Ghadimi, P., Kermani, S., Feizi Chakab, M.A. : Numerical hydro-acoustic analysis of NACA foils in marine applications and comparison of their acoustic behavior. ISRN Mech. Eng., 2013, 1-12, 2013.
  • 30. Kelterer ME, Pecnik R, Sanz W. : Computation of Laminar-Turbulent Transition in Turbumachinery Using the Correlation Based γ-Reθ Transition Model. ASME Proceedings, Turbomachinery, 7, 613-622.
  • 31. Counsil J.N., Boulama K.G. 2013? : Low-Reynolds-Number Aerodynamic Performances of the NACA 0012 and Selig–Donovan 7003 Airfoils. J Aircraft, 50(1), 204-216. 2010
  • 32. Khayatzadeh P. , Nadarajah S. : Aerodynamic Shape Optimization via Discrete Viscous Adjoint Equations for the k-wSST Turbulence and y-Re0 Transition Models. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, US. 2011.
  • 33. Menter, F.R. : Two equation eddy-viscosity turbulence models for aerodynamics for engineering applications. AIAA J. 32(8). 1598-1605. 1994.
  • 34. Ansys CFX User’s Manual 2013.
  • 34. McCormick, D. : Boundary Layer Separation Control With Directed Synthetic Jets. AIAA Paper No. 2000-0519, 2011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78a81955-06f3-40f2-abbf-0503d77d2cdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.