PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optical imaging of ferroelectric domains in periodically poled lithium niobate using ferroelectric liquid crystals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ferroelectric liquid crystals exhibiting a chiral smectic C* phase are deposited on z-cut periodically poled lithium niobate substrates and investigated by polarized optical microscopy. While the pure substrates placed between crossed polarizers and observed in transmission appear dark, uniformly aligned liquid crystal films deposited on these substrates show alternating domains with varying brightness. This effect can be attributed to the well-known coupling between the direction of the spontaneous polarization and the optical axis in the birefringent ferroelectric smectic C* phase. Quantitative measurements of the tilt angle between the local optical axis and the smectic layer normal confirm antiparallel orientations of spontaneous polarization of the liquid crystal from domain to domain, as expected by the periodic poling of the lithium niobate substrate. This effect provides a valuable non-destructive method of optical inspection of the quality of periodically poled ferroelectric substrates, which plays an important role in achieving quasi-phase-matching in non-linear optical applications.
Rocznik
Strony
art. no. e150611
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Faculty of Science and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
  • Faculty of Science and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
  • Faculty of Science and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
  • Institut für Chemische Verfahrenstechnik, Hochschule Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany
  • Faculty of Science and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
  • Faculty of Science and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
  • Faculty of Science and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
  • Faculty of Science and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
Bibliografia
  • [1] The Handbook of Photonics (eds. Gupta, M. C. & Ballato, J.), 2nd edition. (CRC Press, Boca Raton, London, New York, 2007).
  • [2] de Gennes, P. G. & Prost, J. The physics of Liquid Crystals, 2nd edition. (Clarendon Press Oxford, 1993).
  • [3] Hum, D. S. & Fejer, M. M. Quasi-phasematching. Comptes Rendus Physique 8, 180-198 (2007). https://doi.org/10.1016/j.crhy.2006.10.022.
  • [4] Berth, G. et al. Imaging of the ferroelectric domain structures by confocal Raman spectroscopy. Ferroelectrics 420, 44-48 (2011). https://doi.org/10.1080/00150193.2011.594774.
  • [5] Berth, G. et al. Imaging of ferroelectric micro-domains in X-cut lithium niobate by confocal second harmonic microscopy. Ferroelectrics 389, 132-141 (2009). https://doi.org/10.1080/00150190902993267.
  • [6] Röder, T. Rastersondenmikroskopie an flüssigkristallinen und heterogenen organischen Strukturen. (Paderborn University, 2004). http://d-nb.info/973218266/34 (in German).
  • [7] Barry, I. E., Ross, G. W., Smith, P. G. R., Eason, R. W. & Cook, G. Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains. Mater. Lett. 37, 246-254 (1998). https://doi.org/10.1016/S0167-577X(98)00100-1.
  • [8] Jákli, A., Saupe, A., Scherowsky, G. & Chen, X. H. Indication of ferroelectricity in columnar mesophases of pyramidic molecules. Liq. Cryst. 22, 309-316 (1997). https://doi.org/10.1080/026782997209379.
  • [9] Nishikawa, H. et al. A fluid liquid-crystal material with highly polar order. Adv. Mater. 29, 1702354 (2017). https://doi.org/10.1002/adma.201702354.
  • [10] Sebastián, N. et al. A. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal. Phys. Rev. Lett. 124, 037801 (2020). https://doi.org/10.1103/PhysRevLett.124.037801.
  • [11] Chen, X., Korblova, E., Dong, D. & Clark, N. A. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics. Proc. Nat. Acad. Sci. 117, 14021-14031 (2020). https://doi.org/10.1073/pnas.2002290117.
  • [12] Bock, H. & Helfrich, W. Ferroelectrically switchable columnar liquid crystal. Liq. Cryst. 12, 697-703 (1992). https://doi.org/10.1080/02678299208029104.
  • [13] Niori, T., Sekine, T., Watanabe, J., Furukawa, T. & Takezoe, H. Distinct ferroelectric smectic liquid crystals consisting of banana shaped achiral molecules. J. Mater. Chem. 6, 1231-1233 (1996). https://doi.org/10.1039/jm9960601231.
  • [14] Meyer, R. B., Liebert, L., Strzelecki, L. & Keller, P. Ferroelectric liquid crystals. Journal de Physique Lettres 36, 69-71 (1975). https://doi.org/10.1051/jphyslet:0197500360306900.
  • [15] Goodby, J. W. et al. Ferroelectric Liquid Crystals: Principles, Properties and Applications. (Gordon and Breach, Philadelphia, 1991).
  • [16] Lagerwall, S. T. Ferroelectric and Antiferroelectric Liquid Crystals. (Wiley-VCH, Weinheim, 1999).
  • [17] Clark, N. A. & Lagerwall, S. T. Submicrosecond bistable electro‐optic switching in liquid crystals. Appl. Phys. Lett. 36, 899-901 (1980). https://doi.org/10.1063/1.91359.
  • [18] Nataf, G. F. et al. High-contrast imaging of 180° ferroelectric domains by optical microscopy using ferroelectric liquid crystals. Appl. Phys. Lett. 116, 212901 (2020). https://doi.org/10.1063/5.0008845.
  • [19] Jokisaari, J. P., Kantola, A. M., Lounila J. A. & Petri Ingman, L. Detection of phase biaxiality in liquid crystals by use of the quadrupole shift in 131Xe NMR spectra. Phys. Rev. Lett. 106, 017801 (2011). https://doi.org/10.1103/PhysRevLett.106.017801.
  • [20] Jain, S. C. & Kitzerow, H.-S. A new method to align smectic liquid crystals by photo-polymerization. Jpn. J. Appl. Phys. 33, Part 2, L656-L659 (1994). https://doi.org/10.1143/JJAP.33.
  • [21] Bahr, C. & Heppke, G. Optical and dielectric investigations on the electroclinic effect exhibited by a ferroelectric liquid crystal with high spontaneous polarization. Liq. Cryst. 2, 825-831 (1987). https://doi.org/10.1080/02678298708086338.
  • [22] Molsen, H. & Kitzerow, H.-S. Bistability in polymer-dispersed ferroelectric liquid crystals. J. Appl. Phys. 75, 710-716 (1994). https://doi.org/10.1063/1.356471.
  • [23] Miyasato, K., Abe, S., Takezoe, H., Fukuda, A. & Kuze, E. Direct method with triangular waves for measuring spontaneous polarization in ferroelectric liquid crystals. Jpn. J. Appl. Phys. 22, L661-L663 (1983). https://doi.org/10.1143/JJAP.22.L661.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78a6570b-72f2-49dc-8200-ab848a43371e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.