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1. INTRODUCTION

In some economic models (see, for example, [2, 5]) one has to consider discontinuous
functions. The existing research results on such models are focused on the existence
of equilibria. In this paper, we present necessary and sufficient conditions for local
Pareto optimality in the Gale model involving possibly discontinuous functions. These
conditions are obtained by applying the recent results of [4] and are formulated in
terms of generalized lower and upper directional derivatives of utility functions.

The results presented here concern Pareto optimal allocations as defined in
[2, Definition 2.2]. Obtaining optimality conditions for equilibrium allocations [2, Defi-
nition 2.3] requires a different approach and will be the subject of further research.

2. FORMULATION OF THE MODEL

We now describe a simplified version of the Gale model [2]. Suppose we have n goods
G1, . . . , Gn and p economic agents A1, . . . , Ap. The set of goods includes all types
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of labor and services as well as material commodities. The economic agents may be
thought of as either consumers or as producers.

The amount of goods G1, . . . , Gn supplied or consumed by an agent Ai in a certain
fixed time interval is given by a vector

xi = (xi,1, . . . , xi,n) ∈ Rn. (2.1)

The j-th coordinate xi,j represents the amount of the good Gj and is positive (respec-
tively, negative) if Gj is supplied (respectively, consumed). Such a vector is called a
commodity bundle of Ai. The set Ci of all possible commodity bundles (2.1) is called
the commodity set or technology set of the agent Ai, i = 1, . . . , p.

In the Gale model it is assumed that the balance inequalities hold, i.e. the to-
tal amount of each good consumed by all agents must not exceed the total amount
supplied:

p∑

i=1

xi,j ≥ 0, j = 1, . . . , n. (2.2)

Definition 2.1. A vector system {x1, . . . , xp} is called:

(i) a feasible allocation if xi ∈ Ci, i = 1, . . . , p, and inequalities (2.2) hold;
(ii) a feasible allocation without savings if xi ∈ Ci, i = 1, . . . , p, and

p∑

i=1

xi,j = 0, j = 1, . . . , n. (2.3)

Let us note that condition (2.2) (respectively, (2.3)) may be written down in an
equivalent vector form

∑p
i=1 xi ≥ 0 (respectively,

∑p
i=1 xi = 0).

We assume that, for each agent Ai, there exists a utility function

hi : Ci → R, (2.4)

i = 1, . . . , p. Each agent tends to maximize his utility function.

Definition 2.2. A feasible allocation {x̄1, . . . , x̄p} is called a Pareto optimal allocation
if, for every other feasible allocation {x1, . . . , xp}, we have either

hi(xi) = hi(x̄i) for all i ∈ {1, . . . , p} (2.5)

or

hj(xj) < hj(x̄j) for some j ∈ {1, . . . , p}. (2.6)
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3. A MULTIOBJECTIVE OPTIMIZATION PROBLEM

In this section we formulate the problem of finding a Pareto optimal allocation in the
Gale model as a multiobjective optimization problem. Such a formulation will enable
us to apply the results of [4] in this particular situation.

Below we reformulate some results from [3] and [4] to the forms where maximiza-
tion instead of minimization is considered. Such versions can easily be obtained by
substituting −f for f in the original theorems. Let X and Y be normed spaces. We
consider the following general multiobjective optimization problem:

max f(x) (3.1)

subject to
x ∈ S :=

{
z ∈ X : −g(z) ∈ D, z ∈ C

}
, (3.2)

where f : X → Rp and g : X → Y . We assume that C and D are nonempty closed
subsets of X and Y , respectively, and D is a convex cone, D 6= Y . The maximization
in (3.1) is understood with respect to the natural partial order defined by

(x ≤ y) if and only if (xi ≤ yi for all i ∈ {1, . . . , p})

or, which is equivalent, with respect to the positive cone Rp
+ := [0,∞)p.

We denote by N (x) the collection of all neighborhoods of x.

Definition 3.1 ([4, Definition 9(a)]). Let m be a positive integer, and let x̄ ∈ S.
We say that x̄ is a strict local Pareto maximizer of order m for problem (3.1)–(3.2) if
there exist α > 0 and U ∈ N (x̄) such that

(f(x)− Rp
+) ∩B(f(x̄), α ‖x− x̄‖m) = ∅ for all x ∈ S ∩ U\{x̄},

where B(ū, ε) := {u ∈ Rp : ‖u− ū‖ < ε} for ū ∈ Rp and ε > 0.

Proposition 3.2 ([3, Proposition 2.11]). Let x̄ ∈ S. Then x̄ is a strict local Pareto
maximizer of order m for problem (3.1)–(3.2) if and only if there exist η ∈ intRp

+

(i.e. η = (η1, . . . , ηp) with ηi > 0, i = 1, . . . , p ) and U ∈ N (x̄) such that there is no
x ∈ S ∩ U\{x̄} satisfying

fi(x) ≥ fi(x̄)− ηi ‖x− x̄‖m for all i ∈ {1, . . . , p}, (3.3)
fj(x) > fj(x̄)− ηj ‖x− x̄‖m for some j ∈ {1, . . . , p}. (3.4)

We now introduce the followingm-th order lower and upper directional derivatives:

dmf(x̄; y) := lim inf
(t,v)→(0+,y)

f(x̄+ tv)− f(x̄)

tm
,

d
m
f(x̄; y) := lim sup

(t,v)→(0+,y)

f(x̄+ tv)− f(x̄)

tm
,
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where the lower and upper limits are taken with respect to the natural partial order
in R̄p (we denote by R̄p the Cartesian product of p copies of R̄ = R ∪ {−∞,∞}; see
[4] for details).

It is shown in [4] that

dmf(x̄; y) = (dmf1(x̄; y), . . . , dmfp(x̄; y)), (3.5)

d
m
f(x̄; y) = (d

m
f1(x̄; y), . . . , d

m
fp(x̄; y)).

We will also use the notation

dg(x̄; y) := lim
(t,v)→(0+,y)

g(x̄+ tv)− g(x̄)

tm
,

whenever this limit exists in Y .
We denote by K(C, x̄) the contingent cone to C at x̄:

K(C, x̄) := {y ∈ X : there exists (tn, yn)→ (0+, y) such that x̄+tnyn ∈ C for all n}.

We also introduce the notation R̄p
+ := [0,∞]p.

Theorem 3.3 ([4, Theorem 11(a)]). Let x̄ ∈ S be a strict local Pareto maximizer
of order m for problem (3.1)–(3.2). Suppose that intD 6= ∅ and dg(x̄; y) exists for all
y ∈ X. Then there exists β > 0 such that

dmf(x̄; y) /∈ B(0, β ‖y‖m) + R̄p
+

for all y ∈ K(C, x̄) ∩ {u ∈ X : dg(x̄;u) ∈ −intD}. (3.6)

In the next theorem we shall use the following notation for the closure of the cone
generated by D + g(x̄):

Dg(x̄) := cl cone(D + g(x̄)). (3.7)

It follows from the convexity of D that Dg(x̄) is a closed convex cone.

Theorem 3.4 ([4, Theorem 15]). Let dimX < ∞, and let x̄ ∈ S. Suppose that
dg(x̄; y) exists for all y ∈ X. If

d
m
f(x̄; y) /∈ R̄p

+, for all y ∈ K(C, x̄) ∩
{
u ∈ X : dg(x̄;u) ∈ −Dg(x̄)

}
\{0}, (3.8)

then x̄ is a strict local Pareto maximizer of order m for problem (3.1)–(3.2).

4. APPLICATION TO THE GALE MODEL

Let us note that Definitions 2.2 and 3.1 are uncomparable, i.e. no one of them implies
the other. However, later we shall compare Definition 3.1 with the following local
version of Definition 2.2.
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Definition 4.1. A feasible allocation {x̄1, . . . , x̄p} is called a locally Pareto optimal
allocation if there exists U ∈ N (x̄), where x̄ = (x̄1, . . . , x̄p), such that for every other
feasible allocation {x1, . . . , xp} with x = (x1, . . . , xp) ∈ U , we have either (2.5) or
(2.6).

To apply the general framework presented in Section 3 to the Gale model, we
consider the following spaces:

X = Y := Rnp = Rn × . . .× Rn

︸ ︷︷ ︸
p times

,

and define the sets C, D and the mapping g in (3.2) as follows:

C := C1 × . . .× Cp, D :=
{
x ∈ X :

p∑

i=1

xi ≥ 0
}
, g(x) := −x. (4.1)

We assume that the sets C1, . . . , Cp are convex and closed. We also assume that each
utility function (2.4) has an extension h̄i to the whole space Rn, that is, there exist
functions h̄i : Rn → R, i = 1, . . . , p, such that

h̄i(xi) = hi(xi) if xi ∈ Ci. (4.2)

This allows us to define the function f in (3.1) by f = (f1, . . . , fp) where

fi(x) = fi(x1, . . . , xp) := h̄i(xi), for all x ∈ X, i = 1, . . . , p. (4.3)

Now, problem (3.1)–(3.2) can be rewritten as

max(f1(x), . . . , fp(x)) (4.4)

subject to

x ∈ S :=
{
z ∈ X : zi ∈ Ci, i = 1, . . . , p;

p∑

i=1

zi ≥ 0
}
. (4.5)

Proposition 4.2. If x̄ = (x̄1, . . . , x̄p) is a strict local Pareto maximizer of order
m for problem (4.4)–(4.5), then {x̄1, . . . , x̄p} is a locally Pareto optimal allocation.
Moreover, condition (2.6) holds for each x 6= x̄.

Proof. Let x̄ be a strict local Pareto maximizer of order m for (4.4)–(4.5). It follows
from Proposition 3.2 that there exist η ∈ intRp

+ and U ∈ N (x̄) such that there is
no x ∈ S ∩ U\{x̄} satisfying (3.3)–(3.4). Since x̄ is feasible for (4.4)–(4.5), we have
x̄i ∈ Ci, i = 1, . . . , p, and so, by (4.2) and (4.3),

fi(x̄) = h̄i(x̄i) = hi(x̄i), i = 1, . . . , p.

Hence, there is no x ∈ S ∩ U\{x̄} satisfying

hi(xi) ≥ hi(x̄i)− ηi ‖x− x̄‖m for all i ∈ {1, . . . , p}, (4.6)
hj(xj) > hj(x̄j)− ηj ‖x− x̄‖m for some j ∈ {1, . . . , p}. (4.7)
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Now, take any other feasible allocation {x1, . . . , xp} such that x = (x1, . . . , xp) ∈
U . If x = x̄, then obviously (2.5) holds. Suppose that x 6= x̄, which implies x ∈
S ∩ U\{x̄} by (4.5). As (4.6) and (4.7) cannot hold simultaneously, we have either

hi(xi) = hi(x̄i)− ηi ‖x− x̄‖m for all i ∈ {1, . . . , p}, (4.8)

or there exists an index l ∈ {1, . . . , p}, depending on x, such that

hl(xl) < hl(x̄l)− ηl ‖x− x̄‖m . (4.9)

Both (4.8) and (4.9) imply condition (2.6).

Theorem 4.3 (necessary conditions). Let x̄ = (x̄1, . . . , x̄p) be a strict local Pareto
maximizer of order m for problem (4.4)–(4.5). Then, for each y = (y1, . . . , yp) such
that

yi ∈ K(Ci, x̄i), i = 1, . . . , p;
p∑

i=1

yi > 0, (4.10)

there exists j ∈ {1, . . . , p} such that dmh̄j(x̄j ; yj) < 0.

Proof. It follows from (4.1) that

intD =
{
x ∈ X :

p∑

i=1

xi > 0
}
6= ∅ and dg(x̄; y) = −y for all y ∈ X. (4.11)

Hence, we can apply Theorem 3.3. Instead of (3.6), we only need the weaker condition
that

dmf(x̄; y) /∈ R̄p
+ (4.12)

for all y satisfying

y ∈ K(C, x̄) ∩
{
u ∈ X : dg(x̄;u) ∈ −intD

}
. (4.13)

Since the sets C1, . . . , Cp are convex, we have, by formula (46) in [1, Chapter 4],

K(C, x̄) = K(C1, x̄1)× . . .×K(Cp, x̄p). (4.14)

Now, let y = (y1, . . . , yp) be such that (4.10) holds. Then the condition
∑p

i=1 yi > 0
is equivalent, by (4.11), to dg(x̄; y) ∈ −intD. From this and (4.14), we have that
y satisfies (4.13). Therefore, (4.12) also holds for y, which means that at least one
component of dmf(x̄; y) is strictly negative. However, it is easy to see that the j-th
component of dmf(x̄; y) is equal, by (3.5) and (4.3), to

dmfj(x̄; y) = lim inf
(t,v)→(0+,y)

fj(x̄+ tv)− fj(x̄)

tm

= lim inf
(t,v)→(0+,y)

h̄j(x̄j + tvj)− h̄j(x̄j)
tm

= dmh̄j(x̄j ; yj).

Hence, the conclusion of the theorem holds.



Necessary and sufficient conditions for a Pareto optimal allocation. . . 833

Theorem 4.4 (sufficient conditions). Suppose that one of the following two conditions
holds:

(a) x̄ = (x̄1, . . . , x̄p) is a feasible allocation without savings and, for each y =
(y1, . . . , yp) 6= 0 satisfying

yi ∈ K(Ci, x̄i), i = 1, . . . , p,

p∑

i=1

yi ≥ 0, (4.15)

there exists j ∈ {1, . . . , p} such that d
m
h̄j(x̄j ; yj) < 0.

(b) x̄ = (x̄1, . . . , x̄p) is a feasible allocation and, for each y = (y1, . . . , yp) 6= 0 satisfying

yi ∈ K(Ci, x̄i), i = 1, . . . , p, (4.16)

there exists j ∈ {1, . . . , p} such that d
m
h̄j(x̄j ; yj) < 0.

Then x̄ is a strict local Pareto maximizer of order m for problem (4.4)–(4.5).

Proof. (a) By assumption, x̄ is a feasible allocation without savings, hence by Defini-
tion 2.1(ii), we have that

∑p
i=1 x̄i = 0. Therefore,

D + g(x̄) = D − x̄ =
{
x− x̄ :

p∑

i=1

xi ≥ 0
}

=
{
u :

p∑

i=1

(ui + x̄i) ≥ 0
}

=
{
u :

p∑

i=1

ui ≥ 0
}
.

Since this set is a closed cone, we obtain by (3.7) that

Dg(x̄) =
{
u :

p∑

i=1

ui ≥ 0
}
. (4.17)

We shall prove that assumption (3.8) of Theorem 3.4 is satisfied. Using (4.11), (4.14)
and (4.17), we can reformulate it as follows:

d
m
f(x̄; y) /∈ R̄p

+ for all y 6= 0 satisfying (4.15). (4.18)

Now, take any y 6= 0 for which (4.15) holds. By assumption (a), we have that

d
m
fj(x̄; y) = d

m
h̄j(x̄j ; yj) < 0 for some j ∈ {1, . . . , p}.

Therefore at least one component of d
m
f(x̄; y) is strictly negative. We have thus

verified condition (4.18). Applying Theorem 3.4, we conclude that x̄ is a strict local
Pareto maximizer of order m for (4.4)–(4.5).

(b) In this case, we cannot guarantee equality (4.17) (it may happen that
D + g(x̄) = X). Therefore, we need to replace (4.15) by (4.16).
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Example 4.5. Consider the case with two agents and one good (p = 2, n = 1). Let
x1 and x2 be the amounts of the good for the first and second agent, respectively, and
let xi ∈ Ci := [−10, 10], i = 1, 2. We shall assume that there exist utility functions

h̄i(xi) =

{
xi for xi ≤ 5

xi − 1 for xi > 5
, i = 1, 2.

After exceeding a certain level of production (in our case this level is 5), the agent
loses some benefits, which he had, so his utility suddenly decreases. This is the reason
why the utility functions in our case are discontinuous.

We shall prove that the point x̄ = (x̄1, x̄2) = (5, 5) is a strict local Pareto maxi-
mizer of order one for the problem

max(f1(x), f2(x)) (4.19)

subject to
x ∈ S := {x ∈ R2 : xi ∈ Ci, i = 1, 2; x1 + x2 ≥ 0}, (4.20)

where fi(x) = h̄i(xi).
Since x̄i ∈ intCi, we have K(Ci, x̄i) = R for i = 1, 2. Now, take any direction

y 6= 0. We compute

d̄1h̄i(x̄i; y) = lim sup
(t,v)→(0+,y)

h̄i(x̄i + tv)− h̄i(x̄i)
t

=





lim sup
(t,v)→(0+,y)

tv
t for y < 0

lim sup
(t,v)→(0+,y)

tv−1
t for y > 0

=




y for y < 0

−∞ for y > 0
, i = 1, 2.

This means that d̄1h̄i(x̄i; y) < 0 for all y 6= 0 and i = 1, 2. It follows from The-
orem 4.4(b) that x̄ is a strict local Pareto maximizer of order one for problem
(4.19)–(4.20).
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