PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on uniaxial mechanical properties and crack propagation in sandstone containing a single oval cavity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The geometry and orientation of cavities in a rock mass has a significant influence on the failure mechanism and fracture propagation. The theoretical study of these behaviors is of great importance to enable fundamental understanding of unstable failure in rock mechanics. A very limited number of experimental studies have been conducted for sandstone specimens containing oval cavities. Sensitive parameters include the short axis (b) to long axis (a) ratio. Here, we enhance the present understanding of crack coalescence behavior around an oval cavity by applying uniaxial compression tests to sandstone cores containing manually inserted single oval cavity, combined with photographic and acoustic emission monitoring. The b:a ratio was varied from 1/4 to 1/1, thus the cross-sectional cavity shape evolved from oval to a fully circular opening. The experimental results showed that the stress–strain curves of specimens containing cavities exhibited multiple stress reductions prior to peak strength, which led to a sudden increase in the accumulated AE count-rate. As the b:a ratio was increased, the uniaxial compressive strength, crack initiation stress and peak strain of cavity specimens all decreased linearly. Tensile fractures, shear fractures, and compound shear-tensile fractures were all observed to emanate from the cavities. Compared to the intact specimen, the failure mode of cavity specimens comprised a mixture of tensile and shear cracks, emanating from the tips (or surfaces) of the oval cavity. For specimen with a cavity angle of 45°, when the b:a ratio was below 1/2, no tensile crack from the surface of short axis was initiated, whereas tensile crack was observed clearly after b:a = 1/2. This study not only increases our understanding of mechanical failure behavior in fractured rock, but also enhances our knowledge of underground tunneling or roadway stability.
Rocznik
Strony
1359--1373
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, PR China
  • GeoEnergy Research Centre, Faculty of Engineering,University ofNottingham,University Park,NottinghamNG7 2RD,UK
autor
  • State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, PR China
autor
  • GeoEnergy Research Centre, Faculty of Engineering,University ofNottingham,University Park,NottinghamNG7 2RD,UK
  • British Geological Survey, Environmental Science Centre, Keyworth, Nottingham NG12 5GG, UK
autor
  • State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, PR China
autor
  • State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, PR China
Bibliografia
  • [1] X.P. Zhou, Y. Wang, X. Xu, Numerical simulation of initiation, propagation and coalescence of cracks using the nonordinary state-based peridynamics, Int. J. Fracture 201 (2) (2016) 213–234.
  • [2] S.Y. Wang, S.W. Sloan, D.C. Sheng, S.Q. Yang, C.A. Tang, Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression, Int. J. Solids Struct. 51 (5) (2014) 1132–1148.
  • [3] C.H. Park, A. Bobet, Crack coalescence in specimens with open and closed flaws: a comparison, Int. J. Rock Mech. Min. Sci. 46 (5) (2009) 819–829.
  • [4] H. Lee, S. Jeon, An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression, Int. J. Solids Struct. 48 (6) (2011) 979–999.
  • [5] R.H. Cao, P. Cao, H. Lin, C.Z. Pu, K. Ou, Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach, Rock Mech. Rock Eng. 49 (3) (2016) 763–783.
  • [6] S.Q. Yang, W.L. Tian, Y.H. Huang, Failure mechanical behavior of pre-holed granite specimens after elevatedtemperature treatment by particle flow code, Geothermics 72 (2018) 124–137.
  • [7] G.S. Esterhuizen, D.R. Dolinar, J.L. Ellenberger, Pillar strength in underground stone mines in the United States, Int. J. Rock Mech. Min. Sci. 48 (1) (2011) 42–50.
  • [8] D. Huang, D. Cen, G. Ma, R. Huang, Step-path failure of rock slopes with intermittent joints, Landslides 12 (5) (2015) 911–926.
  • [9] A.C. Shi, Study on Performance and Method of Feedback Design in High Rock Slope Engineering, Hohai University, Nanjing, 2006 (Ph. D Thesis) (in Chinese).
  • [10] E.Z. Lajtai, B.J. Carter, E.J.S. Duncan, En echelon crack-arrays in potash salt rock, Rock Mech. Rock Eng. 27 (2) (1994) 89–111.
  • [11] P.L.P. Wasantha, P.G. Ranjith, D.R. Viete, L. Luo, Influence of the geometry of partially-spanning joints on the uniaxial compressive strength of rock, Int. J. Rock Mech. Min. Sci. 50 (2) (2012) 140–146.
  • [12] Y. Fujii, Y. Ishijima, Consideration of fracture growth from an inclined slit and inclined initial fracture at the surface of rock and mortar in compression, Int. J. Rock Mech. Min. Sci. 41 (6) (2004) 1035–1041.
  • [13] L.N.Y. Wong, H.H. Einstein, Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression, Int. J. Rock Mech. Min. Sci. 46 (2) (2009) 239–249.
  • [14] E. Sahouryeh, A.V. Dyskin, L.N. Germanovich, Crack growth under biaxial compression, Eng. Fract. Mech. 69 (18) (2002) 2187–2198.
  • [15] D. Li, Q. Zhu, Z. Zhou, X. Li, P.G. Ranjith, Fracture analysis of marble specimens with a hole under uniaxial compression by digital image correlation, Eng. Fract. Mech. 183 (2017) 109–124.
  • [16] S.Q. Yang, Y.H. Huang, P.G. Ranjith, Failure mechanical and acoustic behavior of brine saturated-sandstone containing two pre-existing flaws under different confining pressures, Eng. Fract. Mech. 193 (2018) 108–121.
  • [17] Z.Z. Liang, H. Xing, S.Y. Wang, D.J. Williams, C.A. Tang, A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw, Comput. Geotech. 45 (2012) 19–33.
  • [18] A. Manouchehrian, M. Sharifzadeh, M.F. Marji, J. Gholamnejad, A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism In brittle materials under compression, Arch. Civ. Mech. Eng. 14 (1) (2014) 40–52.
  • [19] Y. Lu, L. Wang, D. Elsworth, Uniaxial strength and failure In sandstone containing a pre-existing 3-D surface flaw, Int. J. Fracture 194 (1) (2015) 59–79.
  • [20] R.H.C. Wong, C.A. Tang, K.T. Chau, P. Lin, Splitting failure In brittle rocks containing pre-existing flaws under uniaxial compression, Eng. Fract. Mech. 69 (17) (2002) 1853–1871.
  • [21] J.P. Liu, Y.H. Li, S.D. Xu, X. Su, C.Y. Jin, Z.S. Liu, Moment tensor analysis of acoustic emission for cracking mechanisms In rock with a pre-cut circular hole under uniaxial compression, Eng. Fract. Mech. 135 (6) (2015) 1457–1468.
  • [22] S.Y. Wang, S.W. Sloan, D.C. Sheng, C.A. Tang, Numerical analysis of the failure process around a circular opening In rock, Comput. Geotech. 39 (1) (2012) 8–16.
  • [23] C.A. Tang, R.H.C. Wong, K.T. Chau, P. Lin, Modeling of compression-induced splitting failure in heterogeneous brittle porous solids, Eng. Fract. Mech. 72 (4) (2005) 597–615.
  • [24] R.H.C. Wong, P. Lin, C.A. Tang, Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression, Mech. Mater. 38 (1) (2006) 142–159.
  • [25] X.D. Zhao, H.X. Zhang, W.C. Zhu, Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression, T. Nonferr. Metal. Soc. 24 (3) (2014) 806–815.
  • [26] A. Fakhimi, F. Carvalho, T. Ishida, J.F. Labuz, Simulation of failure around a circular opening in rock, Int. J. Rock Mech. Min. Sci. 39 (2) (2002) 507–515.
  • [27] B.J. Carte, E.Z. Lajtai, A. Petukhov, Primary and remote fracture around underground cavities, Int. J. Numer. Anal. Met. 15 (1) (1991) 21–40.
  • [28] B.J. Carter, E.Z. Lajtai, Y. Yuan, Tensile fracture from circular cavities loaded in compression, Int. J. Fracture 57 (3) (1992) 221–236.
  • [29] D.W. Hobbs, Scale model studies of strata movement around mine roadways-IV. Roadway shape and size, Int. J. Rock Mech. Min. Sci. 6 (4) (1969) 365–404.
  • [30] M.S. Diederichs, A. Coulson, V. Falmagne, M. Rizkalla, B. Simser, Application of rock damage limits to pillar analysis at Brunswick Mine, in: Proc. of the North American Rock Mechanics Conf., UT Press, Toronto, Ontorio, 2002 1325–1332.
  • [31] W.C. Zhu, J.S. Liu, C.A. Tang, X.D. Zhao, B.H. Brady, Simulation of progressive fracturing processes around underground excavations under biaxial compression, Tunn. Undergr. Space Technol. 20 (3) (2005) 231–247.
  • [32] Y.P. Li, L.Z. Chen, Y.H. Wang, Experimental research on precracked marble under compression, Int. J. Solids Struct. 42 (9–10) (2005) 2505–2516.
  • [33] S.Q. Yang, W.L. Tian, Y.H. Huang, Z.G. Ma, L.F. Fan, Z.J. Wu, Experimental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression, Eng. Fract. Mech. 194 (2018) 154–174.
  • [34] S.Q. Yang, Y.H. Huang, W.L. Tian, J.B. Zhu, An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression, Eng. Geol. 218 (2017) 35–48.
  • [35] S.Q. Yang, W.L. Tian, P.G. Ranjith, Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading, Rock Mech. Rock Eng. 50 (11) (2017) 2871–2889.
  • [36] P.G. Ranjith, M. Fourar, S.F. Pong, W. Chian, A. Haque, Characterisation of fractured rocks under uniaxial loading states, Int. J. Rock Mech. Min. Sci. 41 (2004) 43–48.
  • [37] Z. Zhang, R. Zhang, H. Xie, J. Liu, P. Were, Differences in the acoustic emission characteristics of rock salt compared with granite and marble during the damage evolution process, Environ. Earth Sci. 73 (11) (2015) 6987–6999.
  • [38] F. Amann, E.A. Button, K.F. Evans, V.S. Gischig, M. Blümel, Experimental study of the brittle behavior of clay shale In rapid unconfined compression, Rock Mech. Rock Eng. 44 (4) (2011) 415–430.
  • [39] F. Meng, H. Zhou, S. Li, C. Zhang, Z. Wang, L. Kong, L. Zhang, Shear behaviour and acoustic emission characteristics of different joints under various stress levels, Rock Mech. Rock Eng. 49 (12) (2016) 4919–4928.
  • [40] R. Romani, M. Bornert, D. Leguillon, R. Le Roy, K. Sab, Detection of crack onset in double cleavage drilled specimens of plaster under compression by digital image correlation–theoretical predictions based on a coupled criterion, Eur. J. Mech. A-Solid 51 (2015) 172–182.
  • [41] S. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill Book Company, Inc., New York, 1951, pp. 78–81.
  • [42] Q. Yin, H.W. Jing, G.W. Ma, Experimental study on mechanical properties of sandstone specimens containing a single hole after high-temperature exposure, Géotech. Lett. 5 (1) (2015) 43–48.
  • [43] M.R. Du, H.W. Jing, H.J. Su, T.T. Zhu, Effects of holes geometrical shape on characteristics of strength and failure of sandstone sample containing a single hole, Eng. Mech. 33 (7) (2016) 190–196 (in Chinese).
  • [44] Y.B. Zhang, S.J. Liu, Thermal radiation temperature field variation of hole rock in loading process, Rock Soil Mech. 32 (4) (2011) 1013–1024 (in Chinese).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78985a18-f6dd-4f7a-ad1e-5162c2b470f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.