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Abstract

During tight manoeuvres, twin-screw ships equipped with two rudders located in the propeller slip stream experience 
a fairly large imbalance in the hydrodynamic loads on the propeller and rudders. To investigate the phenomenon 
of rudder asymmetric load in some depth, manoeuvring experiments based on a free-running model were set up in 
which the kinematics of the model, the forces on the rudder and the stock moment were recorded. In parallel, with the 
aim of obtaining an exact estimation of free-stream characteristics of the rudder blade, corresponding wind tunnel 
experiments were also performed. Based on the results of this investigation, an analysis of the interaction effects within 
the hull-propeller-rudder system was performed and some conclusions were drawn.

Keywords: Manoeuvrability, Twin screw–twin rudder ship, Rudder, Resistance, Rudder normal force, Interactions

List of symbols

RA 	 Rudder area
B 	 Breadth of the ship 

Rb 	 Mean chord of the rudder blade
BC 	 Block coefficient
NF 	 Normal force on the rudder
DF 	 Drag force on the rudder 

f 	 Lift gradient coefficient for the rudder
Rh 	 Rudder height

U 	 Approach speed
RU 	 Resultant rudder inflow velocity

RR vu , 	 Components of the rudder inflow velocity 
RR YX , 	 Surge and sway forces due to the rudder

Rα 	 Effective angle of inflow to the rudder
0Rβ 	 Geometrical angle of inflow to the rudder

δ 	 Rudder angle order
0FNδ 	 Angle of the rudder at which the normal force  

	 on the rudder becomes zero

Note: Superscript symbols P, S denote port and starboard, 
respectively.

https://orcid.org/0000-0002-8517-3554
https://orcid.org/0000-0003-4733-2742


POLISH MARITIME RESEARCH, No 3/2023 5

INTRODUCTION

Twin-screw twin-rudder propulsion and steering systems 
have been installed on many types of ship. In view of their very 
good manoeuvring performance, they are used for coastal, 
inland and naval vessels. Under service conditions, however, 
there are indications that a relatively large load imbalance 
can be observed between the external and internal rudders. 

The asymmetry in the rudder forces on the port and 
starboard sides of a single-rudder manoeuvring ship is well 
known, and is related to the propeller slipstream twist [1]. 
In addition, during tight manoeuvres, the propulsion system 
of a twin-screw twin-rudder ship may experience significant 
fluctuation in the shaft loads [2,3]. Similar effects can be 
observed for a rudder system also, but limited investigations 
have been carried out [4,5].

The interactions between the hull, propeller and rudder 
are associated with the flow field viscosity. CFD calculations 
can be used to simulate the flow around rudder, including 
the three-dimensional separation [6]. In the case of a twin-
screw twin-rudder ship, the solution becomes more difficult, 
due the presence of complicated interactions [7,8], and this 
gives rise to a need to perform experimental investigations 
to study this problem. There are two main goals in this case: 
firstly, to obtain reliable empirical results for a twin-rudder 
steering unit load and to analyse the asymmetry between the 
rudder forces during a manoeuvring motion, and secondly, 
to obtain data for benchmarking of the CFD results. It should 
be noted that the experiments reported in this paper were 
done with a model, meaning that the problem of scale effects 
of the phenomena considered here remains and will need 
attention in the future.

The present study focuses on EFD investigations of the 
forces on a twin-rudder steering system. Measurements of 
the rudder blade characteristics were carried out in a free 
stream, and were followed by free-running manoeuvring 
tests in which the rudder forces were recorded during both 
turning motion and specific tight manoeuvres. A preliminary 
analysis of the results and some assessments of the interaction 
effects are presented.

SHIP MODEL 

A scale model of a fast twin-screw twin-rudder ship was 
used. The model was designed and produced in Bulgarian 
Ship Hydrodynamics Centre (BSHC). The main particulars 
of the hull are given in Table 1, and the body sections and 
a 3D view of the hull are shown in Figs. 1 and 2.
Tab. 1. Main particulars of the hull

Non-dimensional hull data Symbol Value
Length-to-beam ratio LPP/B 6.269
Beam-to-draft ratio B/T 3.395
Rudder lateral area AR/LT 0.011
Block coefficient CB 0.460
Number of propellers [–] 2
Number of rudders [–] 2

   
   Fig. 1. View of the body sections   Fig. 2. 3D view of the hull of the model 
 

The ship model was equipped with fixed pitch stock propellers (FPP)  (Fig. 3), for which 
the main characteristics are shown in Table 2. 
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each rudder is shown in Fig. 4. The arrangement of propellers and rudders on the model is 
illustrated in Fig. 5. 
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propellers (FPP) (Fig. 3), for which the main characteristics 
are shown in Table 2.
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The model was equipped with two rudders, as summarised 
in Table 3. The geometry of each rudder is shown in Fig. 4. 
The arrangement of propellers and rudders on the model is 
illustrated in Fig. 5.
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Tab. 3. Data for the rudder model 

Characteristic Symbol Dimensions Model

Rudder area AR m2 0.00545

Rudder height hR m 0.1016

Rudder mean chord bR m 0.0537

  
Fig. 4. Rudder geometry

Fig. 5. View showing the arrangement of rudders and propellers

FREE STREAM RUDDER CHARACTERISTICS 
OBTAINED VIA WIND TUNNEL EXPERIMENTS

Experimental wind tunnel setup 
To obtain the free-stream rudder characteristics of the 

model, an experiment was carried out in the BSHC wind 
tunnel. The experimental model was located in the test section 
of the wind tunnel, labelled 1 in Fig. 6. The closed-circuit 
wind tunnel had an open test section of 800 × 466 mm, and 

was assembled from straight parts of a closed-return passage 
with a rectangular cross section, elbows with corner vanes, 
a nozzle, and an open test section (1). The honeycomb and 
two screens were placed in a closed-return passage. The 
rudder blade of the model (2) was fastened firmly via the 
stock (3) to the α mechanism (4), which changed the angle 
of attack of the rudder profile. The α mechanism was rigidly 
joined to the aerodynamic balance (5). The measurement 
system included the low-speed wind tunnel system and the 
aerodynamic balance and data processing software (based 
on LabVIEW and Matlab). 

Fig. 6 Experimental setup in the wind tunnel (1 - Working section;  
2 - Rudder blade; 3 - Rudder stock; 4 - Rotating mechanism;  

5 - Six-component balance)

Results of measurements
The characteristics of the rudder blade profile are given 

in Fig. 7. The critical angle at which separation started was 
observed at an angle of attack greater than 20°. Under these 
conditions, the lift coefficient dropped to low values and the 
drag on the blade increased sharply. This region was examined 
using smoke visualisation, as shown in Fig. 8.

Fig. 7. Rudder lift and drag coefficients versus angle of attack, Rn=1.93*105
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Fig. 8. Flow separation region observed with smoke visualisation

RUDDER CHARACTERISTICS FROM FREE-
RUNNING MODEL TESTS

EXPERIMENTAL SETUP IN THE MANOEUVRING 
BASIN

Manoeuvring tests with the model were carried out in the 
BSHC Manoeuvring & Seakeeping Basin (Figs. 9 and 10), with 
main dimensions L × B × T = 60 × 40 × 2.5 m (maximum 
depth). The wave making by the model motion was damped 
by a wave-absorbing beach, located at the opposite side from 
the wave generator.

Fig. 9. Main dimensions of the manoeuvring basin

Fig. 10. The BSHC manoeuvring basin 

Model equipment
The equipment needed for the free-running tests was 

physically divided into two types, onboard and onshore 
equipment, which worked together synchronised by a radio 
link. The onboard equipment contained all the units needed 
for remote control of the model and for the measurements, 
data acquisition and data recording, both onboard and 
onshore (Fig. 11).

Fig. 11. Block diagram of the equipment used for the experiments

The complete model equipped for the free-running 
manoeuvring tests is shown in Fig. 12, and the rudder forces 
dynamometer is illustrated in Fig. 13.

 
Fig. 12. Fully equipped ship model

Fig. 13. Rudder force dynamometer
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Experimental results and analysis
Table 4 shows a matrix of the parameters used for the 

experimental program. Two approach speeds were used 
during the free-running manoeuvring tests by varying the 
rudder angle. The rudder forces were originally measured 
in a coordinate system fixed to the rudder, and were then 
recalculated in a coordinate system fixed to the model. In 
addition to the rudder force measurements, all of the other 
kinematic parameters of the manoeuvring motion were 
recorded. During the tests, a constant RPM strategy was 
applied [2,9].

Tab 4. Matrix of parameters for the experiments

Manoeuvre Initial speed
[m/s]

Fn
[-]

Rudder angle
[deg]

Turning 1.9; 2.48 0.34; 0.44 20, 25,30,35

Williamson turn 1.9; 2.48 0.34; 0.44 δ = 35° → ψ=60/
δ = −35°→ψ=180

Steering gear test 1.9; 2.48 0.34; 0.44 35°/−35°

Time series data for the rudder resistance force DF  and the 
normal force NF  are given in Figs. 14–17, where the external 
and internal rudder (according to the direction of turning) 
are denoted as “ext” and “int”, respectively. 
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Fig. 14. Resistance FD (left) and normal force FN (right) for rudder turning through 20°
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Fig. 15. Resistance FD (left) and normal force FN (right) for rudder turning through 25°
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Fig. 16. Resistance FD (left) and normal force FN (right) for rudder turning through in 30°
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Fig. 17. Resistance FD (left) and normal force FN (right) for rudder turning through 35°

Under ship service conditions, there are two extreme 
manoeuvres that can take place in which the rudder system 
is subjected to high loads, which are known as the Williamson 
turn and a steering gear test. For this reason, the rudder 
forces were recorded as the free-running model tests were 
performed. Due to the specific method of rudder control 
in these manoeuvres, in which rudder orders are applied to 
both ship boards (i.e. a given rudder becomes partly external 
and partly internal), the measurement results are compared 
with time series data for a tight manoeuvre with a 35° rudder 
order. Fig. 20 shows a comparison of time series data for the 
normal rudder force recorded in a Williamson turn and in 

From the above figures, the following preliminary 
conclusions can be drawn. Regarding the resistance force 

DF , the internal rudder load systematically increases with 
a characteristic peak value according the bigger rudder 
angle value. At the same time, the external rudder resistance 
increases almost monotonically. The normal rudder force 

NF  increases in similar way, but the difference between the 
two rudder loads is large. For accuracy, we note that under 
steady turning conditions, the periodic fluctuations in the DF  
and NF  values observed after 13–15 s are likely to be due to 
entering of the model in the initially wave system generated 
by the model motion. The peak values of the rudder resistance 
and normal forces are illustrated in Figs. 18 and 19.

                  Fig. 18. Maximum values of FD                                                                     Fig. 19. Maximum values of FN

Fig. 20. FN force over time for a Williamson turn and a 35° turning manoeuvre Fig. 21. FN force over time for a steering gear test and a 35° turning manoeuvre
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a 35° tight turning manoeuvre. Maximum and steady values 
were recorded in the latter case.
Another manoeuvre during which the maximum rudder 
angle needs to be applied dynamically from port to starboard 
and vice versa is the steering gear test, which is normally 
performed in a sea trial of a ship. In this manoeuvre the 
maximum and also the steady rudder normal force values 
do not exceed those in tight circulation (Fig. 21).

Estimation of interaction effects
To perform a complete analysis of the hull-propeller-rudder 

interactions, the results of captive model tests are needed [7]. 
In our case, we had data from the free-running model test, 
and it was therefore possible to determine reliable values for 
the components of the inflow velocity in the rudder region 
when the rudder force was equal to zero [4,5]. Following the 
work in [10,11], we assumed that the rudder force on the port 
(p) and starboard (s) rudders took the form:

SP
Ra

SP
RR

SP
N fUAF ,,, sin5.0 αρ= (1)

The resultant rudder inflow velocities SP
RU ,  then have the 

following components:
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When the model is moving straight ahead, i.e., without drift 
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,α  in Eq. (1) for the corresponding 
expressions in Eqs. (2) and (3), then in non-dimensional form 
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Fig. 21. FN  force over time for a steering gear test and a 35° turning manoeuvre 
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 Based on the above expression, the lateral single rudder inflow velocities are estimated in 
the following way. The non-dimensional normal force for each rudder and the dimensional 
approach speed measured in a steady turn are given by Figs. 22 and 23, respectively. 
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Fig. 22. Non-dimensional normal force FN on the internal and external rudders 

 

 
Fig. 23. Dimensional approach speed measured in a steady turn 
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Fig. 22. Non-dimensional normal force FN on the internal and external rudders 

 

 
Fig. 23. Dimensional approach speed measured in a steady turn 

 
The rudder neutral angle   is reached to -7.8° when rudder normal force    is equal 

to zero . Based on this value, the estimated rudder inflow velocity components are then as follows. 

(8)

Based on the above expression, the lateral single rudder 
inflow velocities are estimated in the following way. The 
non-dimensional normal force for each rudder and the 
dimensional approach speed measured in a steady turn are 
given by Figs. 22 and 23, respectively.
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Fig. 22. Non-dimensional normal force FN on the internal 
and external rudders

Fig. 23. Dimensional approach speed measured in a steady turn

The rudder neutral angle  is reached to -7.8° when 
rudder normal force  is equal to zero. Based on this value, 
the estimated rudder inflow velocity components are then 
as follows.

The external rudder:

=0.94;   
′P

Rv = 0.13,  i.e. P
Ru = 1.99 m/s;  P

Rv  = 0.27 m/s.
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The rudder neutral angle  is reached 5.4° when the 
rudder normal force  is equal to zero . Based on this 
value, the estimated rudder inflow velocity components are 
as follows.

The internal rudder:

=0.93;   
′P

Rv = 0.09,  i.e. P
Ru = 1.96 m/s;  P

Rv  = 0.19 m/s.

CONCLUSIONS AND FUTURE WORK

This paper represents an attempt to look more deeply at 
the characteristics of twin-rudder steering systems, with 
a particular focus on the asymmetry in the rudder load. 
The present work formed part of a BSHC project involving 
research in the field of hull-propeller-rudder interaction 
effects in the case of multi-rudder systems. 

These results will form the basis for further investigations, 
including captive static drift model tests with the propulsion 
ratio and measurements of the rudder and hull forces.
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