Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we investigate a new method to control the plasma electron number density of copper metal using a near-infrared (NIR) picosecond Nd:YAG laser-induced plasma spectroscopy (LIPS) technique. The applied laser parameters are as follows; laser pulse energy and intensity varied from 29.2 to 59.4 mJ ± 3% and from 6.01×1010 to 12.35×1010 W/cm2 ± 5%, respectively, for a single pulse at 170 ps pulse duration, and beam diameter about 0.5 ± 0.1 mm. By considering the Stark broadening of a specific spectral line, electron density can be calculated using a neutral copper line at 521.8 nm, assuming the local thermodynamic equilibrium (LTE) condition. The observed electron density values were 1.09×1016, 2.24×1016, 3.60×1016, and 4.75×1016 cm–3 for the laser pulse energies 29.2, 41, 52.4, and 59.4 mJ, respectively. The plasma electron density values are increased with the increase in laser pulse energy. Such findings were interpreted due to an increase in the mass ablation rates with laser pulse energy. The obtained results explore the ability to control the plasma electron density by controlling the picosecond pulse energy. These results can contribute to the development of plasma technologies and their applications in many fields.
Czasopismo
Rocznik
Tom
Strony
365--374
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department of Physics, Faculty of Science, Cairo University, Cairo, Egypt
- Egypt Nanotechnology Center (EGNC), Cairo University, Cairo, Egypt
autor
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
autor
- Department of Physics, Faculty of Science, Cairo University, Cairo, Egypt
Bibliografia
- [1] ADHIKARI B.R., KHANAL R., Introduction to the plasma state of matter, Himalayan Physics 4(4), 2013, pp. 60–64, DOI: 10.3126/hj.v4i0.9430.
- [2] COOPER J., Plasma spectroscopy, Reports on Progress in Physics 29, 1966, pp. 35–130, DOI: 10.1088/0034-4885/29/1/302.
- [3] FANTZ U., Basics of plasma spectroscopy, Plasma Sources Science and Technology 15(4), 2006, pp. S137–S147, DOI: 10.1088/0963-0252/15/4/S01.
- [4] RUSAK D.A., CASTLE B.C., SMITH B.W., WINEFORDNER J.D., Fundamentals and applications of laser-induced breakdown spectroscopy, Critical Reviews in Analytical Chemistry 27(4), 1997, pp. 257–290, DOI: 10.1080/10408349708050587.
- [5] AHMAD K., TAWFIK W., FAROOQ W.A., SINGH J.P., Analysis of alumina-based titanium carbide composites by laser-induced breakdown spectroscopy, Applied Physics A 117, 2014, pp. 1315–1322, DOI: 10.1007/s00339-014-8544-7.
- [6] THIEM T.L., SALTER R.H., GARDNER J.A., LEE Y.I., SNEDDON J., Quantitative simultaneous elemental determinations in alloys using laser-induced breakdown spectroscopy (LIBS) in an ultra-high vacuum, Applied Spectroscopy 48(1), 1994, pp. 58–64, DOI: 10.1366/0003702944027615.
- [7] MOHAMED W.T.Y., Calibration free laser-induced breakdown spectroscopy (LIBS) identification of seawater salinity, Optica Applicata 37(1–2), 2007, pp. 5–19.
- [8] JAROTA A., PASTORCZAK E., TAWFIK W., XUE B., KANIA R., ABRAMCZYK H., KOBAYASHI T., Exploring the ultrafast dynamics of a diarylethene derivative using sub-10 fs laser pulses, Physical Chemistry Chemical Physics 21(1), 2019, pp. 192–204, DOI: 10.1039/c8cp05882b.
- [9] SUGIOKA K., Progress in ultrafast laser processing and future prospects, Nanophotonics 6(2), 2017, pp. 393–413, DOI: 10.1515/nanoph-2016-0004.
- [10] DING P., HU B., LI Y., Numerical simulation of copper ablation by ultrashort laser pulses, http://arxiv.org/abs/1107.3710 (accessed June 2020).
- [11] KOMPITSAS M., ROUBANI-KALANTZOPOULOU F., BASSIOTIS I., DIAMANTOPOULOU A., GIANNOUDAKOS A., Laser induced plasma spectroscopy (LIPS) as an efficient method for elemental analysis of environmental samples, EARSeL eProceedings, No. 1, 2000, pp. 130–138.
- [12] ABDELLATIF G., IMAM H., A study of the laser plasma parameters at different laser wavelengths, Spectrochimica Acta Part B: Atomic Spectroscopy 57(7), 2002, pp. 1155–1165, DOI: 10.1016/S0584-8547(02)00057-5.
- [13] UNNIKRISHNAN V.K., ALTI K., KARTHA V.B., SANTHOSH C., GUPTA G.P., SURI B.M., Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana – Journal of Physics 74(6), 2010, pp. 983–993, DOI: 10.1007/s12043-010-0089-5.
- [14] NAEEM M.A., IQBAL M., AMIN N., MUSADIQ M., JAMIL Y., CECIL F., Measurement of electron density and temperature of laser-induced copper plasma, Asian Journal of Chemistry 25(4), 2013, pp. 2192–2198, DOI: 10.14233/ajchem.2013.13392.
- [15] MESSAOUD ABERKANE S., BENDIB A., YAHIAOUI K., ABDELLI-MESSACI S., AMARA S.E., HARITH M.A., Effect of laser wavelength on the correlation between plasma temperature and surface hardness of Fe-V-C metallic alloys, Spectrochimica Acta Part B: Atomic Spectroscopy 113, 2015, pp. 147–151, DOI: 10.1016/j.sab.2015.09.012.
- [16] XU W., CHEN A., WANG Q., ZHANG D., WANG Y., LI S., JIANG Y., JIN M., Generation of high-temperature and low-density plasma with strong spectral intensity by changing the distance between the focusing lens and target surface in femtosecond laser-induced breakdown spectroscopy, Journal of Analytical Atomic Spectrometry 34(5), 2019, pp. 1018–1025, DOI: 10.1039/c8ja00359a.
- [17] ASLAM FAROOQ W., TAWFIK W., AL-MUTAIRI F.N., ALAHMED Z.A., Qualitative analysis and plasma characteristics of soil from a desert area using LIBS technique, Journal of the Optical Society of Korea 17(6), 2013, pp. 548–558, DOI: 10.3807/JOSK.2013.17.6.548.
- [18] KRAMIDA A., RALCHENKO Y., READER J., NIST ASD TEAM (2018), NIST Atomic Spectra Database (ver. 5.6.1), http://physics.nist.gov/asd (accessed August 11, 2014), National Institute of Standards and Technology, Gaithersburg, MD, DOI: 10.18434/T4W30F.
- [19] MOHAMED W.T.Y., Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera, Optics and Laser Technology 40(1), 2008, pp. 30–38, DOI: 10.1016/j.optlastec.2007.04.004.
- [20] MORTAZAVI S.Z., PARVIN P., MOUSAVI POUR M.R., REYHANI A., MOOSAKHANI A., MORADKHANI S., Time-resolved evolution of metal plasma induced by Q-switched Nd:YAG and ArF-excimer lasers, Optics and Laser Technology 62, 2014, pp. 32–39, DOI: 10.1016/j.optlastec.2014.02.006.
- [21] POPOV A.M., SUSHKOV N.I., ZAYTSEV S.M., LABUTIN T.A., The effect of hyperfine splitting on Stark broadening for three blue-green Cu I lines in laser-induced plasma, Monthly Notices of the Royal Astronomical Society 488(4), 2019, pp. 5594–5603, DOI: 10.1093/mnras/stz1874.
- [22] QINDEEL R., TAWFIK W., Measurement of plasma characteristics of the optically generated copper plasma by laser spectroscopy technique, Optoelectronics and Advanced Materials – Rapid Communications 8(7–8), 2014, pp. 741–746.
- [23] CABALIN L.M., LASERNA J.J., Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation, Spectrochimica Acta Part B: Atomic Spectroscopy 53(5), 1998, pp. 723–730, DOI: 10.1016/S0584-8547(98)00107-4.
- [24] BOGAERTS A., CHEN Z., Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation, Spectrochimica Acta Part B: Atomic Spectroscopy 60(9–10), 2005, pp. 1280–1307, DOI: 10.1016/j.sab.2005.06.009.
- [25] TAN S., WU J., ZHANG Y., WANG M., OU Y., A model of ultra-short pulsed laser ablation of metal with considering plasma shielding and non-Fourier effect, Energies 11(11), 2018, article 3163, DOI: 10.3390/en11113163.
- [26] HUSSAIN T., GONDAL M.A., SHAMRAIZ M., Determination of plasma temperature and electron density of iron in iron slag samples using laser induced breakdown spectroscopy, IOP Conference Series: Materials Science and Engineering 146, 2016, article 012017, DOI: 10.1088/1757-899X/146/1/012017.
- [27] MURBAT H.H., HAMZA H.A., The influence of Nd: YAG laser energy on plasma characteristics produced on Si: Al alloy target in atmosphere pressure, Journal of Materials Sciences and Application 1(1), 2017, pp. 1–7, DOI: 10.17303/jmsa.2017.1.101.
- [28] RACIUKAITIS G., BRIKAS M., GEDVILAS M., Efficiency aspects in processing of metals with high-repetition-rate ultra-short-pulse lasers, ICALEO, M403, 2008, pp. 176–184, DOI: 10.2351/1.5061377.
- [29] QI H., LAI H., Micromachining of metals and thermal barrier coatings using a 532 nm nanosecond fiber laser, Physics Procedia 39, 2012, pp. 603–612, DOI: 10.1016/j.phpro.2012.10.079.
- [30] HAMAD A.H., Effects of different laser pulse regimes (nanosecond, picosecond and femtosecond) on the ablation of materials for production of nanoparticles in liquid solution, [In] High Energy Short Pulse Lasers, [Ed.] R. Viskup, IntechOpen, 2016, DOI: 10.5772/63892.
- [31] HOFFMAN J., MOSCICKI T., SZYMANSKI Z., The effect of laser wavelength on heating of ablated carbon plume, Applied Physics A 104, 2011, pp. 815–819, DOI: 10.1007/s00339-011-6420-2.
- [32] LIU H.C., MAO X.L., YOO J.H., RUSSO R.E., Early phase laser induced plasma diagnostics and mass removal during single-pulse laser ablation of silicon, Spectrochimica Acta Part B: Atomic Spectroscopy 54(11), 1999, pp. 1607–1624, DOI: 10.1016/S0584-8547(99)00092-0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-78974964-0f43-46f2-9fd9-dee0a338eea7