PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Atmospheric air temperature as an integrated indicator of climate change

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Atmospheric air temperature serves as a fundamental indicator of climate change, directly influencing ecosystems, water resources, and human livelihoods. The study of temperature trends is essential for understanding the impact of global warming as well as developing strategies for environmental sustainability and climate adaptation. The purpose of the research was to study the dynamics of atmospheric air temperature as one of integrated indicator of climate change and the main factors influencing the state of water resources on the example of the territory of Mykolaiv city and the Mykolaiv region. The study methods involved observations, comparisons and analogies, analysis, synthesis, and generalization. Also, the research was carried out using Microsoft Exсel and mathematical modeling through the use of regression analysis. The method involved constructing statistical models to predict the dependent variable based on one or more independent variables. The findings derived from regression analysis were visualized through scatterplots, regression lines, and confidence intervals, allowing for a clear interpretation of trends and patterns. Over the period 1991–2024, the average annual temperature in the Mykolaiv region increased by 1.2 °C, and its growth rate is three times higher than the global rate. The highest temperature was recorded in 1998 (40.1 °C), the lowest in 2006 (−25.9 °C), and recent years (2023–2024) have become the warmest in the entire period of observations. The summer months show the greatest temperature extremes: the average maximum temperature in August reaches +29.6 °C, and the number of hot days is steadily increasing every year. Therefore, the data indicate a steady increase in days with temperatures above 25 °C during the analyzed period. This may be the result of global warming and climate change. However, in some years, the number of hot days may be lower or higher than trend values, which indicates natural fluctuations and the possible influence of other climatic factors. In general, the graph shows a clear trend towards an increase in the number of hot days, which is an important indicator of climate change in the region.
Twórcy
autor
  • Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
  • Petro Mohyla Black Sea National University, Mykolaiv, Ukraine
autor
  • University of Presov, 17. novembra 3724/15, 080 01 Prešov, Slovakia
  • State University of Applied Sciences in Nowy Sacz, Stanisława Staszica 1, 33-300 Nowy Sącz, Poland
Bibliografia
  • 1. April 2024 – 11th consecutive warmest month globally. URL : http://surl.li/tsbdm
  • 2. Bernatska, N.; Dzhumelia, E.; Dyakiv, V.; Mitryasova, O.; Salamon, I. (2023). Web-Based information and analytical monitoring system tools–online visualization and analysis of surface water quality of mining and chemical enterprises, Ecological Engineering & Environmental Technology, 24(3), 99–108.
  • 3. Bezsonov, Ye.; Mitryasova, O.; Smyrnov, V.; Smyrnova, S. (2017). Influence of the South- Ukraine electric power producing complex on the ecological condition of the Southern Bug River. Eastern-European Journal of Enterprise Technologies, 4(10), (88), 20–28.
  • 4. Climate Change (2013): The Physical Science Basis. IPCC Working Group I Contribution to AR5: Approved Summary for Policymakers. URL : http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/ WG1AR5_SPM_FINAL.pdf
  • 5. Copernicus Interactive Climate Atlas. URL : https:// atlas.climate.copernicus.eu/atlas
  • 6. European Environment Agency (EEA), 2023. URL: https://www.eea.europa.eu/en
  • 7. IPCC, 2021: Climate Change 2021: Climate Change 2021: The Physical Science Basis. https://www. ipcc.ch/report/ar6/wg1/
  • 8. Ishchenko, V., Pohrebennyk, V., Kochan, R., Mitryasova, О., Zawislak S. (2019). Assessment of hazardous household waste generation in Eastern Europe. International Multidisciplinary Scientific Geoconference SGEM, Albena, Bulgaria. 30 June – 6 July 2019, 6.1, 19, 559−566.
  • 9. Kochanek, A., Kobylarczyk, S. (2024). The analysis of the main geospatial factors using geoinformation programs required for the planning, design and construction of a photovoltaic power plant. J. Ecol. Eng. 25, 49–65.
  • 10. Kwaśnicki P., Augustowski D., Generowicz A., Kochanek, A. (2024). Influence of Ti Layers on the efficiency of solar cells and the reduction of heat transfer in building-integrated photovoltaics. Energies, 17, 5327.
  • 11. Mats, A., Mitryasova, O., Salamon, I., Smyrnov, V. 2025. Spatial-temporal characteristics of surface water quality. Journal of Ecological Engineering, 26(1), 204−212.
  • 12. Mitryasova, O., Pohrebennyk, V., Kochanek, A., Sopilnyak, I. (2016). Correlation interaction between electrical conductivity and nitrate content in natural waters of small rivers. International Multidisciplinary Scientific Geoconference SGEM, Vienna, Austria, 2 November – 5 November 2016, 3, 357–365.
  • 13. Mitryasova, О., Pohrebennyk, V., Kardasz, P. (2018). Hydrochemical Aspects of Surface Water Quality Assessment. 18th International Multidisciplinary Scientific Geoconference SGEM 2018, Albena, Bulgaria. 30 June – 9 July 2018, 5.2(18), P. 513−520
  • 14. Mitryasova, O., Pohrebennyk, V., Salamon, I., Oleksiuk, A., Mats, A. (2021). Temporal patterns of quality surface water changes, Journal of Ecological Engineering, 22(4), 283–295.
  • 15. National Report on the State of the Natural Environment in the Mykolaiv Region in (2023). Mykolaiv, 2023, 221. (in Ukrainian).
  • 16. Pohrebennyk, V., Cygnar, M., Mitryasova, O., Politylo, R., Shybanova, A. (2016). Efficiency of Sewage Treatment of Company «Enzyme». 16th International Multidisciplinary Scientific Geoconference SGEM 2016, Albena, Bulgaria, 30 June – 6 July 2016, Book 5, Ecology, Economics, Education and Legislation, Volume II, Ecology and Environmental Protection, 295–302.
  • 17. Pohrebennyk V., Mitryasova, O., Dzhumelia, E., Kochanek A. (2017). Evaluation of Surface Water Quality in Mining and Chemical Industry. 17th International Multidisciplinary Scientific Geoconference SGEM 2017, Albena, Bulgaria, 29 June – 5 July 2017, 51(17), 425–432.
  • 18. Tuz R. (2022). Global climate changes and their impact on the state of water resources in the Mykolaiv region. Preserved for our future. XV Mykolaiv municipal ecological conference, Mykolaiv, November 30, 2022. Mykolaiv, Mykolaiv, 2023, 88–91. (Tuz R. V. Hlobalni zminy klimatu ta yikh vplyv na stan vodnykh resursiv Mykolaivskoi oblasti. Zberezhemo dlia nashchadkiv. XV Mykolaivskykh miskykh ekolohichnykh chytan, Mykolaiv, 30 lystopada 2022., Mykolaiv, 2023, 88–91) (in Ukrainian).
  • 19. Shevchenko, O. et al. (2014). Climate Change Vulnerability Assessment: Ukraine. Kyiv, 2014, 74. URL: https://necu.org.ua/wp-content/uploads/ ukraine_cc_vulnerability.pdf (Shevchenko O. ta in. Otsinka vrazlyvosti do zminy klimatu: Ukraina. Kyiv, 2014, 74) (in Ukrainian).
  • 20. Ventusky. URL : https://www.ventusky.com/uk/mykolayiv
  • 21. WMO Provisional State of the Global Climate 2024, WMO, 2024. https://library.wmo.int/index. php?lvl=notice_display&id=22156#.Y4csiHbP02z
  • 22. UN Framework Convention on Climate Change. URL : https://unfccc.int/
  • 23. Ukrainian Hydrometeorological Center. https://www.meteo.gov.ua/en/
  • 24. UNEP Global Environment Monitoring System. https://www.unep.org/annualreport/2023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-788f334b-da30-4b44-b69e-fa8c3917bab8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.