PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heat transfer in thin porous fibrous material: mathematical modelling and experimental validation using active thermography

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the modelling of the heat transfer process in a thin porous fibrous material such as a paper sheet when it is subjected to an incident heat flux introduced by a laser beam. A mathematical model based on the control volume principle is developed for numerical estimation of radial temperature distribution which is validated experimentally by infrared thermography. Here the heat flux is introduced by a CO2 laser beam of 10.6 μm wavelength and an infrared image sequence is recorded as a function of time with a high resolution infrared camera. The preliminary validation results indicate that the simulation model can predict the transient development of sheet temperature very accurately under the specified heating conditions. The model can enhance our understanding and insights of the heat transfer process in such media, which is of great interest for many drying and thermal applications. Though the application shown here is on a 0.1 mm thick paper sheet, the model can be extended to any thin porous fibrous media such as textiles and nonwovens.
Rocznik
Strony
95--99
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Panipat Institute of Engineering & Technology, 70 Km Milestone, G.T. Road, Samalkha, Panipat, India
autor
  • Tianjin Univ. of Sci. & Technol., Tianjin Key Lab Pulp & Paper, Tianjin 300457, P. R. China
autor
  • Fachgebietes Papierfabrikation und Mechanische Verfahrenstechnik, Alexanderstrasse 8, 64287, Technische Universität Darmstadt, Germany
Bibliografia
  • 1. Atkins, J.W., Rodencal, T.E., and Vickery, D.E. (1982): Correcting a poor moisture profile improves productivity. Tappi J. 65(2), 49.
  • 2. Banerjee, D., Garbe, C.S., Schimpf, U., Jaehne, B., and Schabel, S. (2008): An active thermographic technique for highly resolved heat transport measurements in paper drying, Appita Journal, 61(3), 244-249.
  • 3. Bison, P .G., Grinzato, E., and Marintti, S. (2004): Local thermal diffusivity measurement. QIRT J., 1(2), 241.
  • 4. Bolf, N. (2004): Application of infrared thermography in chemical engineering, Kemija u Industriji 53(12), 549.
  • 5. Çengel, Y.A. (2007): Heat and Mass Transfer: A Practical Approach. 3rd ed. New York: McGraw-Hill, p. 901.
  • 6. Cernuschi, F., Bison, P., Figari, A., Marinetti, S. and Grinzato, E. (2004): Thermal diffusivity measurements by photothermal and thermographic techniques, Int. J. Thermophys. 25(2), 439.
  • 7. Goldstein, R.J., Sparrow, E.M., and Jones, D.C. (1973): Natural convection mass transfer adjacent to horizontal plates, Int. J. Heat Mass Transfer 16(5), 1025.
  • 8. Incropera, F., and DeWitt, D. (2007): Fundamentals of Heat and Mass Transfer, 6th ed., New York: Wiley, p. 997.
  • 9. Jiji, L.M. (2006): Heat Convection, Berlin: Springer-Verlag, p. 434.
  • 10. Kiiskinen, H.T., Kukkonen, H.K., Pakarinen, P.I. and Laine, A.J. (1997): Infrared thermography examination of paper structure, Tappi J. 80(4), 159.
  • 11. Kreith, F. and Bohn, M.S. (2001): Principles of Heat Transfer, 6th ed., Brooks/Cole, p. 848.
  • 12. Lloyd, J.R., and Moran, W.R. (1974): Natural convection adjacent to horizontal surface of various planforms, J. Heat Transfer 96, 443.
  • 13. Meola, C., and Carlomagno, G.M. (2004): Recent advances in the use of infrared thermography, Meas. Sci. Technol. 15(9), R27.
  • 14. Mercer, C. (1984): Thermography can help to improve paper machine efficiency, Pulp Paper Can. 85(9), 13.
  • 15. Michalak, M., Krucinska, I., and Wiecek, B. (2000): Application of thermography for slow and fast varying thermal processes in textile research, Proc. Quantitative Infrared Thermography, QIRT 2000, Reims, July 2000.
  • 16. Philippi, I., Batsale, J.C., Maillet, D., and Degiovanni, A. (1995): Measurement of thermal diffusivities through processing of infrared images, Rev. Sci. Instrum. 66(1), 182.
  • 17. Popp, C.J. (2006): Untersuchung von Austauschprozessen an der Wasseroberflaeche aus Infrarot-Bildsequenzen mittles frequenzmodulierter Waermeeinstrahlung, Ph.D. Thesis, Ruprecht-Karls-Universtaet, Heidelberg.
  • 18. Rohlf, J.W. (1994): Modern Physics from ? to Z0, New York: Wiley, 646.
  • 19. Tyler, D.L (1972): Infrared moisture measurement experience with a press section application, Tappi J. 55(4), 563.
  • 20. Vavilov, V.P. (1996): Subjective remarks on the terminology used in thermal/infrared nondestructive testing, in Proc. SPIE Vol. 2766, Thermosense XVIII: An International Conference on Thermal Sensing and Imaging Diagnostic Applications, Burleigh, D., and Spicer, J. (eds.), Orlando, FL, USA. p. 276.
  • 21. Wiecek, B., Wajman, T., Gralewicz, G., and Michalak, M. (2003): Multilayer structure investigations using lock-in and pulse thermography possible applications in medicine, in: Engineering in Medicine and Biology Society, Proceedings of the 25th Annual International Conference of the IEEE, Volume 2, 17-21 Sep. 2003, p. 1080.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7887e10d-2522-4388-a423-e40c712c350a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.