PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ettringite as a factor causing structural strengthening of fluvial sand from the Praski terrace (Warsaw, Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Engineering activity may lead to uncontrolled changes in the geological environment. This paper presents an example of structural changes in fluvial sand of the Praski terrace (in Warsaw) caused by the activity of a temporary concrete batching plant. Our investigations made it possible to identify the material responsible for the structural anomalies observed in the bottom of the trench excavation. The compound responsible for the cementation phenomenon was identified as ettringite – hydrated calcium aluminosulphate: Ca6Al2[(OH)12(SO4)3]·26H2O. The source of ettringite were most probably significant volumes of contaminants coming from the temporary concrete batching plant (e.g., from the rinsing of concrete mixers and/or installations for concrete storage and transportation). While penetrating into the ground, ettringite caused extensive cementation of the soil mass, mainly in the saturation zone. As a result, the mineral (chemical) composition of the inter-grain space changed and the structure of the sand was strengthened. The estimated zone of volumetric changes in soil properties was about 6 thousand m3. However, analysis of the chemical composition of groundwater for its potential sulphate contamination, did not reveal any anomalous concentrations of sulphates.
Rocznik
Strony
519--528
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
  • University of Warsaw, Faculty of Geology, Department of Engineering Geology and Geomechanics Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Environmental Protection and Natural Resources, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Environmental Protection and Natural Resources, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • University of Warsaw, Faculty of Geology, Department of Environmental Protection and Natural Resources, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. ASTM D2487-17. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). www.astm.org.
  • 2. Bażyński, J., Drągowski, A., Frankowski, Z., Kaczyński, R., Rybicki, S. and Wysokiński, L. 1999. Principles of preparing engineering geological documentation. 184 pp. Polish Geological Institute; Warsaw. [In Polish]
  • 3. Bentor, Y., Gross, S. and Heller, L. 1963. High-temperature minerals in non-metamorphosed sediments in Israel. Nature, 199 (4892), 478–479.
  • 4. Brown, P.W. and Bothe Jr, J.V. 1993. The stability of ettringite. Advances in Cement Research, 5 (18), 47–63.
  • 5. BS EN ISO 10693:2014. Soil quality. Determination of carbonate content. Volumetric method. www.en-standard.eu.
  • 6. Constantiner, D. and Farrington, S.A. 1999. Review of the thermodynamic stability of ettringite. Cement, concrete and aggregates, 21 (1), 39–42.
  • 7. Culshaw, M.G. and Price, S.J. 2011. The 2010 Hans Cloos lecture: the contribution of urban geology to the development, regeneration and conservation of cities. Bulletin of Engineering Geology and Environment, 70 (3), 333–376.
  • 8. Dobak, P. and Chylińska, A. 2007. Dynamics of settlements changes caused by dewatering system in surroundings of the “Bełchatów” lignite mine, Geologos, 11, 357–364. [In Polish]
  • 9. Head, K.H. 1992. Manual of soil laboratory testing, Volume.1: Soil classification and compaction. 2nd ed. 388 pp. Pentech Presss; London.
  • 10. Hurlbut Jr, C.S. and Baum, J.L. 1960. Ettringite from Franklin, New Jersey. American Mineralogist: Journal of Earth and Planetary Materials, 45 (11–12), 1137–1143.
  • 11. Kong, T.B. and Komoo, I. 1990. Urban geology: case study of Kuala Lumpur, Malaysia. Engineering Geology, 28 (1–2), 71–94.
  • 12. ISO 14688-2:2017. Identification and classification of soil. www.iso.org.
  • 13. ISO 22476-2:2005. Geotechnical investigation and testing. www.iso.org.
  • 14. Kowalczyk, S., Cabalski, K. and Radzikowski, M. 2017. Application of geophysical methods in the evaluation of anthropogenic transformation of the ground: A case study of the Warsaw environs, Poland. Engineering Geology, 216, 42–55.
  • 15. Kumor, M.K. 2016. Expansive clays of the subsoil in Bydgoszcz. Selected geotechnical problems. 233 pp. Wydawnictwo UTP; Bydgoszcz.
  • 16. Kurdowski, W. 1991. Chemistry of concrete, 475 pp. Wydawnictwa Naukowe PWN; Warszawa. [In Polish]
  • 17. Kurdowski, W. and Szeląg, H. 2011. Concrete destruction caused by delayed ettringite formation. Infrastruktura Transportu, 4, 1119–1126. [In Polish]
  • 18. Mehta, P.K. 1972. Stability of ettringite on heating. Journal of the American Ceramic Society, 55 (1), 55–57.
  • 19. Mehta, P.K. 1973. Mechanism of expansion associated with ettringite formation. Cement and concrete research, 3 (1), 1–6.
  • 20. Mianowski, Z. 1997. Hydrogeological Map of Poland in scale 1:50 000 with explanations, Piaseczno sheet, PIG-PIB; Warszawa. [In Polish]
  • 21. Moore, A.E. and Taylor, H.F.W. 1970. Crystal structure of ettringite. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 26 (4), 386–393.
  • 22. Murdoch, J. and Chalmers, R.A. 1960. Ettringite (“Woodfordite”) from Crestmore, California. American Mineralogist, 45 (11–12), 1275–1278.
  • 23. Myneni, S.C., Traina, S.J. and Logan, T.J. 1998. Ettringite solubility and geochemistry of the Ca(OH)2-Al2(SO4)3-H2O system at 1 atm pressure and 298 K. Chemical Geology, 148 (1–2), 1–19.
  • 24. Paczyński, B. 1997. Hydrogeological Map of Poland in scale 1:50 000 with explanations, Warszawa Wschód sheet. PIG-PIB; Warszawa. [In Polish]
  • 25. Pazdro, Z. and Kozerski, B. 1990. Hydrogeology, 624 pp. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 26. Perkins, R.B. and Palmer, C.D. 1999. Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3•26H2O) at 5-75° C. Geochimica et Cosmochimica Acta, 63 (13–14), 1969–1980.
  • 27. Porowska, D. 2014. Sulphur compounds in biogas and groundwater around the reclaimed municipal landfill in Otwock. Przegląd Geologiczny, 62 (11), 761–767. [In Polish]
  • 28. Radzikowski, M., Cabalski, K. and Kowalczyk, S. 2017. Urban geology - A case study of Warsaw agglomeration. Przegląd Geologiczny, 65 (10/2), 883–889. [In Polish]
  • 29. Sarnacka, Z. 1992. Stratigraphy of Quaternary sediments of Warsaw and its vicinity. Prace PIG - Tom 138, 27 pp. [In Polish]
  • 30. Tang, H., Wasowski, J. and Juang, C.H. 2019. Geohazards in the three Gorges Reservoir Area, China - Lessons learned from decades of research. Engineering Geology, 261, 1–16.
  • 31. Taylor, H.F.W., Famy, C. and Scrivener, K.L. 2001. Delayed ettringite formation. Cement and concrete research, 31 (5), 683–693.
  • 32. Warren, C.J. and Reardon, E.J. 1994 The solubility of ettringite at 25°C. Cement and Concrete Research, 24 (8), 1515–1524.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-788473e9-296c-48eb-b98c-cb18bfca64f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.