PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Electromagnetic fields and colony collapse disorder of the honeybee

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Pola elektromagnetyczne i zespół masowego ginięcia pszczoły miodnej
Języki publikacji
EN
Abstrakty
EN
The abrupt disappearance of the bees that pollinate crops is a significant subject of recent study. One theory points to the development of telecommunications technology and an increasing number of electromagnetic field sources as a possible cause of the phenomenon.This paper presents the results of preliminary studies of honeybee exposure to extremely low frequency electromagnetic field (50 Hz; 1 mT, 7 mT).
PL
Nagłe znikanie pszczół, które zapylają uprawy, jest jednym z istotnych tematów ostatnich badań. Jedna z teorii wskazuje na rozwój telekomunikacji i zwiększenie liczby źródeł pola elektromagnetycznego jako możliwą przyczynę tego zjawiska. Artykuł prezentuje wyniki wstępnych badań nad ekspozycję pszczół miodnych na pole elektromagnetyczne o wyjątkowo niskiej częstotliwości (50 Hz; 1 mT 7 mT).
Rocznik
Strony
137--140
Opis fizyczny
Bibliogr. 29 poz.rys.
Twórcy
  • Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Department of Biophysics ul. Lwowska 1, 87-100 Toruń
  • Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Department of Biophysics ul. Lwowska 1, 87-100 Toruń
  • Silesian University of Technology, Faculty of Electrical Engineering, Department of Mechatronics
Bibliografia
  • [1] Hill B., Bartomeus I., The potential of electricity transmission corridors in forested areas as bumblebee habitat, Open Sci., 3 (2016), No. 11, 160525
  • [2] Sahib S., Impact of Mobile Phones on the Density of Honeybees, J. Public Adm. Policy Res., 3 (2011), No. 4, 131- 133
  • [3] Sharma V.P., Kumar N.R. , Changes in honeybee behaviour and biology under the influence of cellphone radiations, Curr. Sci., vol. 98 (2010), No. 10, 1376–1378
  • [4] Greenberg B., Bindokas V.P., Frazier M.J., Gauger J.R., Response of Honey Bees, Apis mellifera L., to High-Voltage Transmission Lines, Environ. Entomol., 10 (1981), No. 5, 600–610
  • [5] Wajnberg E., Acosta-Avalos D., Alves C., De Oliveira J.F., Srygley R.B., Esquivel M.S., Magnetoreception in eusocial insects: An update, J. R. Soc. Interface, 7 (2010), No. SUPPL. 2, 207-225
  • [6] Da Pereira-Bomfim M., Antonialli Junior W.F., Acosta-Avalos D., Magnetoreception in Social Wasps: An Update, EntomoBrasilis, 9 (2016), No. 1, 01–05
  • [7] Lambinet V., Hayden M.E., Reigl K., Gries G., Linking magnetite in the abdomen of honey bees to a magnetoreceptive function, Proc R Soc B, 284 (2017), No. 1858, 20162873
  • [8] Wajnberg E., Cernicchiaro G., Motta De Souza Esquivel D., Antennae: The strongest magnetic part of the migratory ant, BioMetals, 17 (2004), No. 4, 467–470
  • [9] Ferreira, J., Cernicchiaro, G., Winklhofer, M., Dutra, H., De Oliveira, P. S., Esquivel, D.M.S., & Wajnberg, E., Comparative magnetic measurements on social insects, J. Magn. Magn. Mater., 289 (2005), 442-444
  • [10] Gegear R.J., Casselman A., Waddell S., Reppert S. M., Cryptochrome mediates light-dependent magnetosensitivity in Drosophila, Nature, 454 (2008), No. 7207, 1014–1018
  • [11] Gould, J.L., Kirschvink,J.L., Deffeyes, K.S. & B rines , M.L. Orientation of demagnetized bees. J. Exp. Biol 86, (1980) 1–8.
  • [12] Kirschvink J.L., Walker M.M., Diebel C.E., Magnetite-based magnetoreception, Curr. Opinion Neurobiol. 11 (2001). Elsevier 462–467.
  • [13] Liang C.H., Chuang C.L., Jiang J.A. and Yang E.C., Magnetic sensing through the abdomen of the honey bee, Sci. Rep., 6 (2016), 23657
  • [14] Keim, C.N., Cruz-Landim, C., Carneiro, F.G., Farina, M. Ferritin in iron containing granules from the fat body of the honeybees Apis mellifera and Scaptotrigona postica. Micron, 33 (2002), 53-59.
  • [15] Lambinet V., Hayden M.E., Bieri M., Gries G., Does the earth’s magnetic field serve as a reference for alignment of the honeybee waggle dance?, PLoS ONE, 9 (2014), No. 12, 1–13,
  • [16] Wyszkowska J., Stankiewicz M., Krawczyk A., Zys s T., Octopamine Activity as Indicator of Electromagnetic Field Influence on Insect Nervous System, SAEM–First Macedonian-Polish symposium on applied electromagnetic (2006), 83-4.
  • [17] Szemerszky R., Zelena D., Barna I. and Bárdos G., Stress-related endocrinological and psychopathological effects of short-and long-term 50Hz electromagnetic field exposure in rats, Brain Res. Bull., 81 (2010), No. 1, 92–99
  • [18] Wyszkowska J., Shepherd S., Sharkh S. , J ackson C.W. , Newland P.L. , Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts, Sci. Rep., 6 (2016), 36413
  • [19] Wyszkowska J., Stankiewicz M., Krawczyk A., Zyss T., Examination of nervous system exposed to electromagnetic field on the example of cockroach (Periplaneta americana), Przegląd Elektrotechniczny, 82 (2006), 66–67
  • [20] Moore D., Honey bee circadian clocks: behavioral control from individual workers to whole-colony rhythms, J. Insect Physiol., 47 (2001), No. 8, 843–857
  • [21] Bieńkowski P., Wyszkowska J., Techniczne aspekty ekspozycji na pole magnetyczne ekstremalnie niskich częstotliwości (ELF) w badaniach biomedycznych, Med. Pr., 66 (2015), No. 2, 185–197
  • [22] Trawiński T., Szczygieł M., Wyszkowska J., Kluszczyński K., Analysis of magnetic field distribution and mechanical vibration of magnetic field exciter under different voltage supply, Inf. Technol. Biomed. Berl. Springer Berl. Heidelb. (2010), 613–22.
  • [23] Kirschvink, J.L., Padmanabha, S., Boyce, C.K., Oglesby, J. Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J. Exp. Biol. 200 (1997), 1363–1368.
  • [24] Walker, M. M., Bitterman, M.E. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145 (1989), 489–494.
  • [25] Grodzicki P., Caputa M., Social versus individual behaviour: A comparative approach to thermal behaviour of the honeybee (Apis mellifera L.) and the American cockroach (Periplaneta americana L.), J. Insect Physiol., 51 (2005), No. 3, 315–322
  • [26] Grodzicki P., Caputa M., Diurnal and Seasonal Changes in Thermal Preference of Single, Isolated Bees and Small Groups of Bees (Apis mellifera L.), J. Insect Behav., 27 (2014), No. 6, 701–711
  • [27] Grodzicki P., Caputa M., Photoperiod influences endogenous rhythm of ambient temperature selection by the honeybee Apis mellifera, J. Therm. Biol., 37 (2012), No. 8, 587–594
  • [28] Roeder T., Octopamine in invertebrates. Prog. Neurobiol. 59 (1999) 533-561.
  • [29] Wyszkowska J., Jankowska M., Gas P., Electromagnetic Fields and Neurodegenerative Diseases, Przeglad Elektrotechniczny, 95 (2019), no. 1. (in press)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-787de145-51f0-409b-ae29-ab1ea04f5d37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.